Energy News  
A Step Nearer To Understanding Superconductivity

An experiment in magnetic levitation. The car contains two disks made of YBa2Cu3O7, a critical high-temperature superconducting material cooled by liquid nitrogen. The road, which is composed of magnets, produces a magnetic field which cannot penetrate the car. It's exactly as if the magnetic field was an extremely strong air current lifting the car off the ground. Since there is no friction, a small push will set the car moving (indefinitely) along the road. J. Billette - CNRS 2007
by Staff Writers
Paris, France (SPX) Jun 11, 2007
Transporting energy without any loss, travelling in magnetically levitated trains, carrying out medical imaging (MRI) with small-scale equipment: all these things could come true if we had superconducting materials that worked at room temperature. Today, researchers at CNRS have taken another step forward on the road leading to this ultimate goal. They have revealed the metallic nature of a class of so-called critical high-temperature superconducting materials.

This result, which was published in the 31 May 2007 issue of the journal Nature, has been eagerly awaited for 20 years. It paves the way to an understanding of this phenomenon and makes it possible to contemplate its complete theoretical description.

Superconductivity is a state of matter characterized by zero electrical resistance and impermeability to a magnetic field. For instance, it is already used in medical imaging (MRI devices), and could find spectacular applications in the transport and storage of electrical energy without loss, the development of transport systems based on magnetic levitation, wireless communication and even quantum computers.

However, for now, such applications are limited by the fact that superconductivity only occurs at very low temperatures. In fact, it was only once a way of liquefying helium had been developed, which requires a temperature of 4.2 kelvins (-269 C), that superconductivity was discovered, in 1911 (a discovery for which the Nobel Prize was awarded two years later.)

Since the end of the 1980s (Nobel Prize in 1987), researchers have managed to obtain 'high temperature' superconducting materials: some of these compounds can be made superconducting simply by using liquid nitrogen (77 K, or -196 C). The record critical temperature (the phase transition temperature below which superconductivity occurs) is today 138 K (-135 C).

This new class of superconductors, which are easier and cheaper to use, has given fresh impetus to the race to find ever higher critical temperatures, with the ultimate goal of obtaining materials which are superconducting at room temperature. However, until now, researchers have been held back by some fundamental questions. What causes superconductivity at microscopic scales" How do electrons behave in such materials"

Researchers at the National Laboratory for Pulsed Magnetic Fields2, working together with researchers at Sherbrooke, have observed 'quantum oscillations', thanks to their experience in working with intense magnetic fields. They subjected their samples to a magnetic field of as much as 62 teslas (a million times stronger than the Earth's magnetic field), at very low temperatures (between 1.5 K and 4.2 K).

The magnetic field destroys the superconducting state, and the sample, now in a normal state, shows an oscillation of its electrical resistance as a function of the magnetic field. Such an oscillation is characteristic of metals: it means that, in the samples that were studied, the electrons behaved in the same way as in ordinary metals.

The researchers will be able to use this discovery, which has been eagerly awaited for 20 years, to improve their understanding of critical high-temperature superconductivity, which until now had resisted all attempts at modeling it. The discovery has been effective in sorting out the many theories which had emerged to explain the phenomenon, and provides a firm foundation on which to build a new theory. It will make it possible to design more efficient materials, with critical temperatures closer to room temperature. Figure 1 - An experiment in magnetic levitation. The car contains two disks made of YBa2Cu3O7, a critical high-temperature superconducting material cooled by liquid nitrogen. The road, which is composed of magnets, produces a magnetic field which cannot penetrate the car. It's exactly as if the magnetic field was an extremely strong air current lifting the car off the ground. Since there is no friction, a small push will set the car moving (indefinitely) along the road. � J. Billette - CNRS 2007 (these images can be obtained from the CNRS photo library (phototh�que du CNRS, [email protected])

Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor, Nicolas Doiron-Leyraud, Cyril Proust, David LeBoeuf, Julien Levallois, Jean-Baptiste Bonnemaison, Ruixing Liang, D. A. Bonn, W. N. Hardy, Louis Taillefer, Nature, 31 May 2007, Vol 447, pp 565-568.

Email This Article

Related Links
CNRS
Powering The World in the 21st Century at Energy-Daily.com

For Wealthy North Climate Change Has Sunny Side
Tromsoe, Norway (AFP) Jun 08, 2007
Climate change is expected to have disastrous consequences for Earth but some areas will profit, notably wealthy nations in the northern parts of Europe, Russia and the US, scientists say. On Thursday the leaders of the Group of Eight club of wealthy nations agreed to pursue substantial cuts to greenhouse gas emissions that cause global warming and said they would seriously consider halving emissions by 2050.







  • For Wealthy North Climate Change Has Sunny Side
  • A Step Nearer To Understanding Superconductivity
  • Hawaii Geothermal Energy Is Clean, Stable And Always Available
  • New Screening Method To Help Find Better Biofuel Crops

  • NGO Warns Of Explosion Risk At Russian Nuclear Storage
  • US Sees Technical Delay In India Nuclear Pact
  • US Positive On Clinching India Nuclear Accord
  • Britain To Sell Part Of British Energy

  • AIRS Global Map Of Carbon Dioxide From Space
  • Widespread Twilight Zone Detected Around Clouds
  • Rand Says Further Study Warranted On Save The World Air Technology
  • Noxious Lightning

  • Woods Hole Research Center Scientists Study Impacts Of Industrial Logging In Central Africa
  • Zimbabwe Forests Under Threat While Cambodia Censors Logging Report
  • Uganda Shelves Plan To Convert Rainforest
  • Indonesia's Crackdown On Illegal Logging Under Fire

  • Compost Reduces P Factor In Broccoli, Eggplant, Cabbage Trial
  • Wild Relatives Sweeten Breeding Program
  • Soils Offer New Hope As Carbon Sink
  • GM Field Trials Uunderestimate Potential For Cross-Pollination

  • GM Wants To Drive Green But Easy On The Rules
  • PSEG To Replace 1300 Vehicles with Hybrids To Help Curb Carbon Emissions In New Jersey
  • Toyota Taken To Task In Britain For Prius Advert
  • GM To Speed Up Development Of Electric Vehicles

  • Airlines Pledge Emissions Cuts But Warn EU Curbs Could Jeopardise Sector
  • Sandia And Boeing Collaborate To Develop Aircraft Fuel Cell Applications
  • Australia Fears Jet Flight Guilt Could Hit Tourism
  • Nondestructive Testing Keeps Bagram Aircraft Flying

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement