Zig-zagging device focuses high-energy radiation emissions by Staff Writers Washington DC (SPX) Jun 16, 2017
There's no substitute for using the right tool for the job at hand. Using low-energy radiation sources simply isn't suitable for certain tasks: equipment used in cancer treatment requires a strong, monochromatic source of radiation to produce hard X-rays. Other similar radiation sources find applications in nuclear waste processing. To design devices that steadily emit a specific type of radiation, physicists use a special kind of crystal, referred to as a crystalline undulator. In a recent study published in EPJ D, a team has demonstrated the ability to control radiation emissions from a particle travelling through such a device. Tobias Wistisen from Aarhus University, Denmark, and colleagues have shown how to manipulate the emitted radiation by selecting a combination of incoming particle charge and energy, oscillation amplitude and period of the undulator's crystalline lattice. These undulator devices force a penetrating charged particle to radiate, by using crystal deformations to initiate a zig-zagging trajectory. In the new study, Wistisen and colleagues present their experimental findings on radiation produced by incoming electrons with high energy (855 MeV) in a silicon-germanium crystalline undulator that is approximately 10 times thicker than the previously available one. Traditional undulators have magnets that are on the order of 1 cm long, which translates directly into the energy of the emitted radiation, which is typically soft x-rays (1-10 keV). By comparison the undulators in this study have crystal deformations of approximately 40 nm in length, producing a radiation level that is roughly 10,000 higher: 10-50 MeV. As part of this study, the authors then performed theoretical simulations which proved consistent with the observable radiation detected in their experimental setup. R T.N. Wistisen, U.I. Uggerhoj, J. Lundsgaard Hansen, W. Lauth and P. Klag (2017), Radiation collimation in a thick crystalline undulator, European Physical Journal D 71:124, DOI: 10.1140/epjd/e2017-70720-y
Beijing, China (SPX) Jun 08, 2017 Scientists from the Northeastern University, China, have developed a new method to diagnosis a serious electrical problem in microgrids. They published their work in IEEE/CAA Journal of Automatica Sinica (JAS), a joint publication of the Institute of Electrical and Electronic Engineers (IEEE) and the Chinese Association of Automation. Microgrids are island-like pods of power generation wit ... read more Related Links Springer Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |