Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Wireless device converts 'lost' energy into electric power
by Staff Writers
Durham NC (SPX) Nov 14, 2013


This five-cell metamaterial array developed at Duke University has a power-harvesting efficiency of 36.8 percen -- comparable to a solar cell. Credit: Duke Photography.

Using inexpensive materials configured and tuned to capture microwave signals, researchers at Duke University's Pratt School of Engineering have designed a power-harvesting device with efficiency similar to that of modern solar panels.

The device wirelessly converts the microwave signal to direct current voltage capable of recharging a cell phone battery or other small electronic device, according to a report appearing in the journal Applied Physics Letters in December 2013. (It is now available online.)

It operates on a similar principle to solar panels, which convert light energy into electrical current. But this versatile energy harvester could be tuned to harvest the signal from other energy sources, including satellite signals, sound signals or Wi-Fi signals, the researchers say.

The key to the power harvester lies in its application of metamaterials, engineered structures that can capture various forms of wave energy and tune them for useful applications.

Undergraduate engineering student Allen Hawkes, working with graduate student Alexander Katko and lead investigator Steven Cummer, professor of electrical and computer engineering, designed an electrical circuit capable of harvesting microwaves.

They used a series of five fiberglass and copper energy conductors wired together on a circuit board to convert microwaves into 7.3V of electrical energy. By comparison, Universal Serial Bus (USB) chargers for small electronic devices provide about 5V of power.

"We were aiming for the highest energy efficiency we could achieve," said Hawkes. "We had been getting energy efficiency around 6 to 10 percent, but with this design we were able to dramatically improve energy conversion to 37 percent, which is comparable to what is achieved in solar cells."

"It's possible to use this design for a lot of different frequencies and types of energy, including vibration and sound energy harvesting," Katko said. "Until now, a lot of work with metamaterials has been theoretical. We are showing that with a little work, these materials can be useful for consumer applications."

For instance, a metamaterial coating could be applied to the ceiling of a room to redirect and recover a Wi-Fi signal that would otherwise be lost, Katko said. Another application could be to improve the energy efficiency of appliances by wirelessly recovering power that is now lost during use.

"The properties of metamaterials allow for design flexibility not possible with ordinary devices like antennas," said Katko. "When traditional antennas are close to each other in space they talk to each other and interfere with each other's operation. The design process used to create our metamaterial array takes these effects into account, allowing the cells to work together."

With additional modifications, the researchers said the power-harvesting metamaterial could potentially be built into a cell phone, allowing the phone to recharge wirelessly while not in use. This feature could, in principle, allow people living in locations without ready access to a conventional power outlet to harvest energy from a nearby cell phone tower instead.

"Our work demonstrates a simple and inexpensive approach to electromagnetic power harvesting," said Cummer. "The beauty of the design is that the basic building blocks are self-contained and additive. One can simply assemble more blocks to increase the scavenged power."

For example, a series of power-harvesting blocks could be assembled to capture the signal from a known set of satellites passing overhead, the researchers explained. The small amount of energy generated from these signals might power a sensor network in a remote location such as a mountaintop or desert, allowing data collection for a long-term study that takes infrequent measurements.

The research was supported by a Multidisciplinary University Research Initiative from the Army Research Office (Contract No. W911NF-09-1-0539). "A microwave metamaterial with integrated power harvesting functionality," Allen M. Hawkes, Alexander R. Katko, and Steven A. Cummer. Applied Physics Letters 103, 163901 (2013); doi: 10.1063/1.4824473

.


Related Links
Duke University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Expanded Energy Savings Chilling Out at DoubleTree by Hilton
Waltham MA (SPX) Nov 11, 2013
American DG Energy is now operating a chiller to provide chilled water to DoubleTree by Hilton Hotel in Tarrytown, New York. The highly efficient chiller will provide supplemental cooling and increased energy savings. The chiller is in addition to a combined heat and power (CHP) system operating at the property since 2012 that is owned and operated by American DG Energy that provides elect ... read more


ENERGY TECH
World set to heat up despite clean-energy efforts: IEA

Updating building energy codes: How much can your state save?

Smart water meters stop money going down the drain

Emissions pricing and overcompensating

ENERGY TECH
Lure of Israel's gas may dampen Turkish ire

Wireless device converts 'lost' energy into electric power

Boeing and RER Hydro to Provide Quebec with Clean Hydrokinetic Power

Sensor Suitcase Brings Energy Efficiency to Small Commercial Buildings

ENERGY TECH
High bat mortality from wind turbines

Wind turbines blamed in death of estimated 600,000 bats in 2012

Assessing impact of noise from offshore wind farm construction may help protect marine mammals

Windswept German island gives power to the people

ENERGY TECH
China to drive world's renewable energy increase

SolarCity Partners with BMW i to Create Exclusive Solar Service Package

German Nanosolar becomes Smartenergy Renewables Deutschland

Google and KKR Partner to Invest in Portfolio of Solar PV Projects

ENERGY TECH
Ex-Japanese Prime Minister Junichiro Koizumi urges zero nuclear power

Former PM Koizumi calls for nuclear-free Japan

SUSI Robot used in reactor lifetime extension project

AREVA wins a major contract for third nuclear reactor at Angra

ENERGY TECH
USDA Grant Aims to Convert Beetle-Killed Trees into Biofuel

Burning biomass pellets instead of wood or plants in China could lower mercury emissions

Scientists trick algae's biological clock to create valuable compounds

Crafting a better enzyme cocktail to turn plants into fuel faster

ENERGY TECH
China shows off moon rover model before space launch

China providing space training

China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

ENERGY TECH
2013 marked by record sea level, weather extremes: WMO

World Bank's Kim: End 'silly' debate on climate change

Climate activists down forks in solidarity with Philippines

UN panel issues corrections for climate report




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement