Energy News  
ENERGY TECH
Understanding imperfections in fusion magnets
by Paul Rivenberg for MIT News
Boston MA (SPX) Mar 18, 2021

"Three things that have always fascinated me have been learning how things work, finding how to fix them, and using that knowledge to serve and care for those around me," says PSFC graduate student Richard Ibekwe. Credits:Photo: Gretchen Ertl

"I had always expected I'd stay at MIT for the four years, get my undergraduate degree at the end and probably return to the UK."

Richard Ibekwe recalls his early assumptions about his academic path at MIT. Now he is a nuclear science and engineering (NSE) PhD candidate working at the Plasma Science and Fusion Center (PSFC), dedicated to long-term fusion research at MIT, focusing on magnet technology. Recipient of multiple undergraduate awards, Ibekwe has earned graduate-level support from the MIT Energy Initiative, which has enlisted him as an MIT Energy Fellow, sponsored by Commonwealth Fusion Systems. He is also the current president of the MIT student chapter of the American Nuclear Society (ANS).

"Three things that have always fascinated me," he says, "have been learning how things work, finding how to fix them, and using that knowledge to serve and care for those around me. Growing up, that manifested in building and tinkering with things - first toys, and then DIY around the house. Now I see fusion fitting into that interest: There are few problems as hard to solve or that might have as profound a potential positive impact on our planet and the whole of humanity."

Fusion, the reaction that fuels the sun and other stars, is a potentially endless source of carbon-free energy on Earth, if it can only be harnessed. Much research has favored heating hydrogen fuel inside a donut-shaped device called a tokamak, creating plasma that is hot and dense enough for fusion to occur. Because plasma will follow magnetic field lines, these devices are wrapped with magnets to keep the hot fuel from damaging the chamber walls.

Ibekwe's interest in fusion developed only in his senior year, after taking an introductory design class from NSE Assistant Professor Zachary Hartwig.

"As an undergrad, from a distance, fusion seemed a very esoteric, very physics-heavy endeavor. My background was much more engineering-focused," he says. "I was inspired by Zach's teaching, and by the way he fused the science and engineering of fusion research."

When Ibekwe applied to join Hartwig's team as a PhD student he was not aware of the future that was taking shape at the PSFC. A tokamak called SPARC was being designed using a new high-temperature superconductor (HTS), a tape allowing larger electric currents and higher magnetic fields than traditional superconducting coils: It suggested a path to a smaller, less-expensive fusion power plant that could be built more quickly than currently funded international projects.

"I just thought that fusion would be a cool subject to get involved with," says Ibekwe. "It was a happy surprise to discover SPARC was in the works."

Because so much of SPARC's success depends on the new superconducting technology, it is not surprising that Ibekwe and his colleagues are researching it. Because high-temperature superconductors can handle greater magnetic fields than regular superconductors, they are ideal for tokamaks.

"It turns out that almost everything about the fusion process gets much better and more favorable when you increase the magnetic field," Ibekwe says. But he wonders what might negatively impact this process. How might flaws in the HTS tapes affect tokamak performance?

As they fabricate magnets with these thin HTS tapes, Ibekwe and his colleagues ask one key question: What is the critical current? What is the maximum current the tapes can carry before they cease to be superconducting, losing the features that make them central to a tokamak's success, like their ability to conduct large electric currents with no electrical resistance?

"When producing these tapes - these thin, ribbon-shaped wires - the goal is to make them as high-quality as possible so that the maximum current is high and uniform throughout the wire's length. It turns out that when manufacturing these tapes, because perhaps it gets dented, or a speck of dust falls on the tape when growing the crystal, it results in regions where the critical current is much lower. We call those dropouts."

The critical current drops out at those locations, and the superconductor experiences electrical resistance. The area heats up, producing a situation where the heat expands, causing the entire cable to lose conductivity. To make the best of this situation, engineers can try to cut out any defects in the tape and use a shorter length, or they can produce a new length of tape to get what they want. But this corrective process can be expensive and time-consuming.

Ibekwe is embracing the imperfections, doing a deep dive into HTS tape flaws in an attempt to offer pragmatic solutions.

"First," he says, "let's measure and understand the effect of these defects on the performance of the superconducting tapes, which hasn't really been done before in detail. Second, we need to figure out quantitatively how bad a defect we can withstand. Thirdly, how can we create magnets that contain defects in such a way that we can still make usable, efficient magnets?"

Ibekwe believes he may have inherited his pragmatic approach from his parents, who had moved from Nigeria to study in London before Richard was born. His mother completed her PhD in child nutrition while he was growing up.

"I think I got the academic influence from her," he says. "My father is a building contractor. There's the element of the practical aspect in me from him."

Ibekwe's preliminary research suggests the HTS tape magnets he's been working on are intrinsically more tolerant to the presence of defects than low-temperature superconductors.

"The challenge," he says, "is to come up with a design guide that will show engineers building these magnets what's acceptable and what's not."

Ibekwe wants to continue working on the challenging problems in fusion and related fields, taking a holistic approach that is inspired in part by his leadership in ANS, which this year provided opportunities to address issues related to health, isolation, diversity, equity, and inclusion. He foresees an academic career as a good way to achieve this goal.

"I want to wrestle not only with the scientific and engineering questions, but also with the societal and political, the philosophical and ethical questions," he says. "I think the university is the best place to do that."


Related Links
Plasma Science and Fusion Center
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Extreme-scale computing and AI forecast a promising future for fusion power
Plainsboro NJ (SPX) Mar 08, 2021
Efforts to duplicate on Earth the fusion reactions that power the sun and stars for unlimited energy must contend with extreme heat-load density that can damage the doughnut-shaped fusion facilities called tokamaks, the most widely used laboratory facilities that house fusion reactions, and shut them down. These loads flow against the walls of what are called divertor plates that extract waste heat from the tokamaks. But using high-performance computers and artificial intelligence (AI), researcher ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
UK CO2 emissions halved since 1990: study

Germany hits climate target thanks to pandemic

When green energy is the 'default' choice consumers stay loyal to renewables

UK banks face climate conflicts of interest: study

ENERGY TECH
Understanding imperfections in fusion magnets

New approach to thermal protection in outdoor wearable electronics

Material from Russia will triple the capacity of lithium-ion batteries

Wartsila's flexible floating energy storage system bolsters Philippine power grid

ENERGY TECH
TechnipFMC enters partnership with Magnora to develop floating offshore wind projects

Field study shows icing can cost wind turbines up to 80% of power production

BP enters UK offshore wind sector

Denmark moves forward on North Sea 'energy island'

ENERGY TECH
New perovskite fabrication method for solar cells paves way to large-scale production

Seeing both sides of light collection

Study finds plants would grow well in solar cell greenhouses

Sunlight Financial secures 2B in solar financing through expanded partnership with Tech CU

ENERGY TECH
Detecting nuclear power pollution separate from global fall out

Nuclear power is important for a decarbonized, resilient energy system

Putin, Erdogan launch new phase of Turkish nuclear power plant

UAE to host IAEA's most complex nuclear crisis drill

ENERGY TECH
Genome scalpel invented for industrial microalgae to efficiently turn CO2 into biofuel

Double-duty catalyst generates hydrogen fuel while cleaning up wastewater

Aviation leaders launch sustainable-fuel emissions study on a commercial passenger jet

Huge potential for electronic textiles made with new cellulose thread

ENERGY TECH
UK energy giants pivot towards cleaner fuels

Canada opposition chief calls climate change 'real'; party says no

Environmental groups file complaint against Chevron's green claims

UK's oil consultant contract for climate talks sparks concern

ENERGY TECH
Europe's droughts since 2015 'worst in 2,000 years'

The number that could shift climate action into overdrive

Pentagon working group to address climate change as national security threat

US to unveil Paris climate pact commitments in April









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.