Energy News  
ENERGY TECH
Tuning in to invisible waves on the JET tokamak
by Paul Rivenberg for MIT News
Boston MA (SPX) Feb 25, 2022

"There aren't that many operating tokamaks in the US right now, not to mention one that would be running deuterium-tritium - which hasn't been run for over 20 years." says research scientist Alex Tinguely. "I got a very lucky spot where I was an MIT postdoc, but I lived in Oxford, working on a very international project."

Research scientist Alex Tinguely is readjusting to Cambridge and Boston. As a postdoc with the Plasma Science and Fusion Center (PSFC), the MIT graduate spent the last two years in Oxford, England, a city he recalls can be traversed entirely "in the time it takes to walk from MIT to Harvard."

With its ancient stone walls, cathedrals, cobblestone streets, and winding paths, that small city was his home base for a big project: JET, a tokamak that is currently the largest operating magnetic fusion energy experiment in the world.

Located at the Culham Center for Fusion Energy (CCFE), part of the U.K. Atomic Energy Authority, this key research center of the European Fusion Program has recently announced historic success. Using a 50-50 deuterium-tritium fuel mixture for the first time since 1997, JET established a fusion power record of 10 megawatts output over five seconds.

It produced 59 megajoules of fusion energy, more than doubling the 22 megajoule record it set in 1997. As a member of the JET Team, Tinguely has overseen the measurement and instrumentation systems (diagnostics) contributed by the MIT group.

A lucky chance
The postdoctoral opportunity arose just as Tinguely was graduating with a PhD in physics from MIT. Managed by Professor Miklos Porkolab as the principal investigator for over 20 years, this postdoctoral program has prepared multiple young researchers for careers in fusion facilities around the world. The collaborative research provided Tinguely the chance to work on a fusion device that would be adding tritium to the usual deuterium fuel.

Fusion, the process that fuels the sun and other stars, could provide a long-term source of carbon-free power on Earth, if it can be harnessed. For decades researchers have tried to create an artificial star in a doughnut-shaped bottle, or "tokamak," using magnetic fields to keep the turbulent plasma fuel confined and away from the walls of its container long enough for fusion to occur.

In his graduate student days at MIT, Tinguely worked on the PSFC's Alcator C-Mod tokamak, now decommissioned, which, like most magnetic fusion devices, used deuterium to create the plasmas for experiments. JET, since beginning operation in 1983, has done the same, later joining a small number of facilities that added tritium, a radioactive isotope of hydrogen. While this addition increases the amount of fusion, it also creates much more radiation and activation.

Tinguely considers himself fortunate to have been placed at JET.

"There aren't that many operating tokamaks in the U.S. right now," says Tinguely, "not to mention one that would be running deuterium-tritium (DT), which hasn't been run for over 20 years, and which would be making some really important measurements. I got a very lucky spot where I was an MIT postdoc, but I lived in Oxford, working on a very international project."

Strumming magnetic field lines
The measurements that interest Tinguely are of low-frequency electromagnetic waves in tokamak plasmas. Tinguely uses an antenna diagnostic developed by MIT, EPFL Swiss Plasma Center, and CCFE to probe the so-called Alfven eigenmodes when they are stable, before the energetic alpha particles produced by DT fusion plasmas can drive them toward instability.

What makes MIT's "Alfven Eigenmode Active Diagnostic" essential is that without it researchers cannot see, or measure, stable eigenmodes. Unstable modes show up clearly as magnetic fluctuations in the data, but stable waves are invisible without prompting from the antenna. These measurements help researchers understand the physics of Alfven waves and their potential for degrading fusion performance, providing insights that will be increasingly important for future DT fusion devices.

Tinguely likens the diagnostic to fingers on guitar strings.

"The magnetic field lines in the tokamak are like guitar strings. If you have nothing to give energy to the strings - or give energy to the waves of the magnetic field lines - they just sit there, they don't do anything. The energetic plasma particles can essentially 'play the guitar strings,' strum the magnetic field lines of the plasma, and that's when you can see the waves in your plasma. But if the energetic particle drive of the waves is not strong enough you won't see them, so you need to come along and 'pluck the strings' with our antenna. And that's how you learn some information about the waves."

Much of Tinguely's experience on JET took place during the Covid-19 pandemic, when off-site operation and analysis were the norm. However, because the MIT diagnostic needed to be physically turned on and off, someone from Tinguely's team needed to be on site twice a day, a routine that became even less convenient when tritium was introduced.

"When you have deuterium and tritium, you produce a lot of neutrons. So, some of the buildings became off-limits during operation, which meant they had to be turned on really early in the morning, like 6:30 a.m., and then turned off very late at night, around 10:30 p.m."

Looking to the future
Now a research scientist at the PSFC, Tinguely continues to work at JET remotely. He sometimes wishes he could again ride that train from Oxford to Culham - which he fondly remembers for its clean, comfortable efficiency - to see work colleagues and to visit local friends. The life he created for himself in England included practice and performance with the 125-year-old Oxford Bach Choir, as well as weekly dinner service at The Gatehouse, a facility that offers free support for the local homeless and low-income communities.

"Being back is exciting too," he says. "It's fun to see how things have changed, how people and projects have grown, what new opportunities have arrived."

He refers specifically to a project that is beginning to take up more of his time: SPARC, the tokamak the PSFC supports in collaboration with Commonwealth Fusion Systems. Designed to use deuterium-tritium to make net fusion gains, SPARC will be able to use the latest research on JET to advantage. Tinguely is already exploring how his expertise with Alfven eigenmodes can support the experiment.

"I actually had an opportunity to do my PhD - or DPhil as they would call it - at Oxford University, but I went to MIT for grad school instead," Tinguely reveals. "So, this is almost like closure, in a sense. I got to have my Oxford experience in the end, just in a different way, and have the MIT experience too."

He adds, "And I see myself being here at MIT for some time."


Related Links
Plasma Science and Fusion Center
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
"Impossible" breakthrough brings fusion energy device closer to realization
Princeton NJ (SPX) Feb 17, 2022
Scientists have achieved a remarkable breakthrough in the conceptual design of twisty stellarators, experimental magnetic facilities that could reproduce on Earth the fusion energy that powers the sun and stars. The breakthrough shows how to more precisely shape the enclosing magnetic fields in stellarators to create an unprecedented ability to hold the fusion fuel together. "The key thing was developing a piece of software that allows you to rapidly try out new design methods" said Elizabeth Paul ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Australia's largest power firm rejects green takeover bid

Maine policymakers make bold push for publicly owned power

Paris starts building 'Triangle' tower despite green opposition

Vietnam arrests green activist on tax charges

ENERGY TECH
Metasurface-based antenna turns ambient radio waves into electric power

Biodegradable alternative could replace lithium-ion

Tuning in to invisible waves on the JET tokamak

New power sources

ENERGY TECH
US offshore wind power lease sale nets record $4.3 bn

More than $1.5 bn bid so far in US offshore wind auction

Offshore wind farms reshape the North Sea

Turbine 'torture' for Greek islanders as wind farms proliferate

ENERGY TECH
"Workhorse" of photovoltaics combined with perovskite in tandem for the first time

Perovskite Solar Modules with a marble look

Increasing efficiency in two-terminal tandem solar cells

Solar-powered system offers a route to inexpensive desalination

ENERGY TECH
UN watchdog concerned over Ukraine nuclear power plant

Finland to re-evaluate Russian Rosatom nuclear reactor project over crisis in Ukraine: PM

French state to pony up billions for cash-strapped EDF

Nuclear power may be the key to least-cost, zero-emission electricity systems

ENERGY TECH
New, nature-inspired concepts for turning CO2 into clean fuels

Basis for next-gen bioprocesses

Scientists use "green" solvent and natural pigment to produce bioplastic

At bioenergy crossroads, should corn ethanol be left in the rearview mirror?

ENERGY TECH
WTI surges more than 6%, Brent more than 5% on Ukraine invasion

TotalEnergies makes 'significant' oil discovery off Namibia

Australian energy firms challenge excess emissions claim

Not so SWIFT: EU energy concerns spark Russia sanctions rift

ENERGY TECH
US Supreme Court hears climate case as UN issues stark warning

Russian official apologises for war in Ukraine at UN climate meet

Potential widespread effects of geoengineering on both climate and the carbon cycle

Horn of Africa drought drives 13 million to hunger









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.