Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Tortuous paths hamper ion transport
by Peter Ruegg for ETHZ News
Zurich, Switzerland (SPX) Apr 11, 2013


Electrodes of Lithium ion batteries are composed of various particles of different shapes and sizes. These particles have a strong influence on how fast ions flow through the electrode. (Copyright: Martin Ebner / ETH Zurich).

ETH-Zurich researchers use x-ray tomography to screen lithium ion battery electrodes and can reconstruct the microstructure in high resolution. This helps to understand the discharging and charging process better and develop optimised electrodes.

Mobile phone batteries that last longer, car batteries that enable you to drive further, storage that accumulates a lot of energy from wind and solar generators: many applications require better batteries. The research essentially focuses on three aspects here: researchers want to increase the energy density - in other words store more energy in a smaller battery.

They are also looking to improve the discharging and charging speed by changing and controlling the material, shape and size of the electrochemically active particles and the structure of the battery electrodes in a targeted fashion. And scientists are working on the durability of the battery in general by trying to understand the degradation mechanisms that shorten the life of batteries.

Martin Ebner, a doctoral student from the group headed by Vanessa Wood, a professor at the Department of Information Technology and Electrical Engineering, has been examining the issue of the discharging and charging speed. In order to understand what influences it, he has been researching the microstructure of the electrodes of commercially available and home-made lithium ion batteries. Knowing this also enables us to understand the charging and discharging mechanism better and endeavour to produce optimised electrodes with more efficient batteries in mind.

Hard-to reach microstructure scanned
"Until now, the microstructure has been neglected in battery research because it was difficult to access experimentally," says Ebner. He has managed able to fill this gap with the aid of synchrotron radiation x-ray tomography and Professor Marco Stampanoni's group, which specialises in working with this particular radiation.

"This radiation, which can be produced at the Swiss Light Source at the Paul Scherrer Institute, is very bright and spectrally pure. This allows many high-resolution experiments in a short space of time," says Ebner. It only took around five minutes to study a sample on the TOMCAT beamline as opposed to up to five hours on conventional devices. This meant that Ebner could x-ray many electrode material samples produced under different conditions.

Using the hundreds of gigabytes of data that the x-ray tomography generated, the electroengineer was ultimately able to reconstruct the three-dimensional electrode structure. His paper was recently published in the journal Advance Energy Materials and the raw data of the sixteen cathodes studied deposited in a freely accessible open-source database.

Small particles on boundary layer
The computer reconstructions reveal that the electrodes comprise numerous particles of different shapes and sizes. While smaller particles appear on the edge of the cathode, larger ones are mostly present in the interior. Moreover, Ebner was also able to demonstrate that some particles can break under very high pressure during production. While this does not have much of an impact on the electrochemistry of the battery, it needs to be taken into consideration when simulating it on the computer, he stresses.

The size, distribution and configuration of the particles, however, have a major influence on a battery's discharging and charging speed. Smaller particles form a compact structure while the structure in large particles tends to be looser and thus provide more pore space. The porosity of the material ultimately determines the battery's energy density and the speed at which the lithium ions surge through the electrodes during charging or discharging.

The flow behaviour of the lithium ions can be described by what is known as tortuosity - the value that indicates the degree of a structure's twistedness. To put it simply, the more twisted the path of the ions through the electrode, the more slowly the battery is charged or discharged and the greater the tortuosity.

Graphite plates hamper ion flow
While round to potato-shaped particles mostly have a positive influence on flow, plate-like ones such as those in the anode, the negative pole, provide unfavourable conditions for rapid charge transport. A lithium battery's anode is mostly made of graphite. This highly conductive material consists of wafer-thin plates that lie on top of one another like roof tiles.

Depending on the direction from which the ions hit the graphite plates, the tortuosity can be very high. In order to flow around the tiles, long paths are required, which vastly reduces the discharging and charging speed. Lengthwise, however, the lithium ions cross the graphite without any major detours. The analyses reveal that graphite electrodes already exhibit direction-dependent differences in path length of over 300 per cent with a porosity of forty per cent.

The tortuosity of graphite electrodes might be improved through the use of round graphite particles. The drawback here is that up to seventy per cent of the valuable raw material is wasted during production - one reason why many battery manufacturers still use plate-shaped graphite as an anode material.

Optimising established technique
Lithium ion batteries have been in use with more or less the same base materials since the 1980s. The materials can be processed industrially in large quantities and alternatives that are commonly found as raw materials on Earth are gradually catching on. In the long run, researchers want to understand how the microstructure of the electrodes is formed and how you can influence it positively.

One idea is to rely on the self-organisation of the materials used. However, the criterion is and will remain whether the method is feasible and affordable for industry. "We mustn't forget that a battery is a mass product that needs to be producible in large quantities," says Ebner.

How lithium ion batteries work
In lithium ion batteries, the energy is stored in the form of positively charged lithium atoms (ions) that are found at the minus pole in a charged battery. If energy is taken from the battery, negatively charged electrons flow from the minus pole to the plus pole via the external circuit. To balance the charge, positively charged lithium ions also flow from the minus pole to the plus pole.

However, these travel in the electrolyte fluid inside the battery. The process is reversible: lithium ion batteries can be recharged with electricity. In most lithium ion batteries these days, the plus pole is composed of the transition metal oxides cobalt, nickel and manganese, the minus pole of graphite. In more powerful lithium ion batteries of the next generation, however, elements such as tin or silicon may well be used at the minus pole.

Ebner M, Geldmacher F, Marone F, Stampanoni M, Wood V. X-Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes. Advanced Energy Materials 2013. Article first published online: 13 MAR 2013. DOI: 10.1002/aenm.201200932

.


Related Links
ETH-Zurich
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Discovery opens door to efficiently storing and reusing renewable energy
Calgary UK (SPX) Apr 02, 2013
Two University of Calgary researchers have developed a ground-breaking way to make new affordable and efficient catalysts for converting electricity into chemical energy. Their technology opens the door to homeowners and energy companies being able to easily store and reuse solar and wind power. Such energy is clean and renewable, but it's available only when the sun is shining or the wind ... read more


ENERGY TECH
Jordan scrambles to secure energy resources

ADB report warns on Asian energy

GeorgiaEnergyData.org Breaks Down Barriers to Clean Energy

Outside View: Ukraine energy independence

ENERGY TECH
Understanding the life of lithium ion batteries in electric vehicles

Tin nanocrystals for the battery of the future

Tortuous paths hamper ion transport

Gazprom, Volkswagen ink natgas fuel deal

ENERGY TECH
Providing Capital and Technology, GE is Farming the Wind in America's Heartland with Enel Green Power

Wind skeptic British minister replaced

Using fluctuating wind power

France publishes 1GW offshore wind tenders

ENERGY TECH
Spectrolab Sets World Record for Solar Cell Efficiency

Nanowires Have the Power to Revolutionize Solar Energy

Global solar photovoltaic industry is likely now a net energy producer

Trina Solar supplies 33Mw to S.A.G. Solarstrom AG for UK PV project

ENERGY TECH
EU to probe Bulgaria energy sector

Fukushima may delay nuclear energy growth

IAEA team to inspect Fukushima next week

Slovakia signals ready to work with Rosatom on nuclear power

ENERGY TECH
Breakthrough in hydrogen fuel production could revolutionize alternative energy market

Renewable Energy Group Selects FuelQuest Zytax Determination to Automate Energy Tax Processing

Researchers Engineer Plant Cell Walls to Boost Sugar Yields for Biofuels

Regulation recommendations so that biofuel plants don't become weeds

ENERGY TECH
Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

ENERGY TECH
Southern California sagebrush better suited to climate change

US businesses call for climate law

Ban hails Thatcher the forgotten climate warrior

Rapid climate change and the role of the Southern Ocean




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement