Energy News  
ENERGY TECH
Surprise link found to edge turbulence in fusion plasma
by Staff Writers
Plainsboro NJ (SPX) May 27, 2020

Image showing spiraling magnetic field fluctuations at the edge of the NSTX tokamak.

Blobs can wreak havoc in plasma required for fusion reactions. This bubble-like turbulence swells up at the edge of fusion plasmas and drains heat from the edge, limiting the efficiency of fusion reactions in doughnut-shaped fusion facilities called "tokamaks." Researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have now discovered a surprising correlation of the blobs with fluctuations of the magnetic field that confines the plasma fueling fusion reactions in the device core.

Further investigation of this correlation and its role in the loss of heat from magnetic fusion reactors will help to produce on Earth the fusion energy that powers the sun and stars. "These results add a new aspect to our understanding of the plasma edge heat loss in a tokamak," said physicist Stewart Zweben, lead author of a paper in Physics of Plasmas that editors have selected as a featured article. "This work also contributes to our understanding of the physics of blobs, which can help to predict the performance of tokamak fusion reactors."

Fusion reactions combine light elements in the form of plasma - the hot, charged state of matter composed of free electrons and atomic nuclei that makes up 99 percent of the visible universe - to produce massive amounts of energy. Scientists are seeking to create and control fusion on Earth as a source of safe, clean and virtually limitless power to generate electricity.

PPPL researchers discovered the surprising link last year when re-analyzing experiments made in 2010 on PPPL's National Spherical Torus Experiment (NSTX) - the forerunner of today's National Spherical Torus Experiment-Upgrade (NSTX-U). The blobs and fluctuations in the magnetic field, called "magnetohydrodynamic (MHD)" activity, develop in all tokamaks and have traditionally been seen as independent of each other.

Surprise clue
The first clue to the correlation was the striking regularity of the trajectory of large blobs, which travel at roughly the speed of a rifle bullet, in experiments analyzed in 2015 and 2016. Such blobs normally move randomly in what is called the "scrape-off layer" at the edge of tokamak plasma, but in some cases all large blobstraveled at nearly the same angle and speed. Moreover, the time between the appearance of each large blob at the edge of the plasma was nearly always the same, virtually coinciding with the frequency of dominant MHD activity in the plasma edge.

Researchers then tracked the diagnostic signals of the blobs and the MHD activity in relation to each other to measure what is called the "cross-correlation coefficient," which they used to evaluate a set of the 2010 NSTX experiments. Roughly 10 percent of those experiments were found to show a significant correlation between the two variables.

The scientists then analyzed several possible causes of the correlation, but could find no single compelling explanation. To understand and control this phenomenon, Zweben said, further data analysis and modeling will have to be done - perhaps by readers of the Physics of Plasmas paper.

Research paper


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Scientists explore the power of radio waves to help control fusion reactions
Plainsboro NJ (SPX) Apr 29, 2020
A key challenge to capturing and controlling fusion energy on Earth is maintaining the stability of plasma - the electrically charged gas that fuels fusion reactions - and keeping it millions of degrees hot to launch and maintain fusion reactions. This challenge requires controlling magnetic islands, bubble-like structures that form in the plasma in doughnut-shaped tokamak fusion facilities. These islands can grow, cool the plasma and trigger disruptions - the sudden release of energy stored in th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
World needs 'green recovery', health pros tell G20 leaders

Global CO2 emissions to drop 4-7% in 2020, but will it matter

New map highlights China's export-driven CO2 emissions

COVID-19 to cause record emissions fall in 2020: IEA

ENERGY TECH
Skoltech scientists show a promising solid electrolyte is 'hydrophobic'

Electrons break rotational symmetry in exotic low-temp superconductor

Surrey unveils fast-charging super-capacitor technology

Coordination polymer glass provides solid support for hydrogen fuel cells

ENERGY TECH
US wind plants show relatively low levels of performance decline as they age

Wave, wind and PV: The world's first floating Ocean Hybrid Platform

Supercomputing future wind power rise

Wind energy expansion would have $27 billion economic impact

ENERGY TECH
Untangling a key step in photosynthetic oxygen production

New 3D-printed system speeds up solar cell testing from hours to minutes

NUS researchers create novel device that harnesses shadows to generate electricity

Next-generation solar cells pass strict international tests

ENERGY TECH
General Atomics integrates nuclear division into Electromagnetics Systems Group

US awards two projects utilizing the BWRX-300 Small Modular Reactor Design

Study reveals single-step strategy for recycling used nuclear fuel

Framatome and the Technical University of Munich to develop new fuel for research reactor

ENERGY TECH
Chemical recycling makes useful product from waste bioplastic

Researchers turn algae leftovers into renewable products with flare

Can renewable energy really replace fossil fuels?

Solve invasive seaweed problem by turning it into biofuels and fertilisers

ENERGY TECH
Iraqi minister seeks Gulf funds to stave off fiscal collapse

The trader who called the 2020 oil crisis

Can oilfield water safely be reused for irrigation in California

Saudi attacker on US base had longstanding al-Qaeda ties: US

ENERGY TECH
Modern sea-level rise linked to human activities, Rutgers research reaffirms

Czech Republic drought visible from space

Potentially fatal combinations of humidity and heat are emerging across the globe

Pandemic taking toll on weather and climate watch: UN









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.