Energy News  
ENERGY TECH
Superconductors: Resistance is futile
by Staff Writers
Vienna, Austria (SPX) Jan 30, 2019

These are different cuprates which are being studied at TU Wien.

Every standard cable, every wire, every electronic device has some electric resistance. There are, however, superconducting materials with the ability to conduct electrical current with a resistance of exactly zero - at least at very low temperatures. Finding a material which behaves as a superconductor at room temperature would be a scientific breakthrough of incredible conceptual and technological importance. It could lead to a wide range of new applications, from levitating trains to new imaging technologies for medicine.

The search for high-temperature superconductors is extremely difficult, because many of the quantum effects related to superconductivity are not yet well understood. Professor Neven Barisi, professor for solid state physics at TU Wien (Vienna) is performing experiments with cuprates, a class of materials which behave as a superconductor at record temperatures as high as 140K at ambient pressure. Barisi and his colleagues have now come up with a remarkable set of results and new insights that could profoundly change the way we think about these complex materials and high-temperature superconductivity in general.

The Quest for the Holy Grail
"The phenomenon of high-temperature superconductivity has been thoroughly investigated for decades, but nobody has cracked the problem yet", says Neven Barisi. "Quite a few materials show superconducting behaviour at temperatures close to absolute zero, and we understand why this happens in some of them. But the real challenge is to understand superconductivity in cuprates, where this states persists at much higher temperatures. A material which behaves as a superconductor at room temperature would be the Holy Grail of solid state physics - and we are getting closer and closer."

Barisi and his colleagues have shown that there are two fundamentally different kinds of charge carriers in cuprates, and suggested that superconductivity crucially depends on the subtle interplay between them.

Some of the electrical charge is localized - each of these charge carriers sits at particular set of atoms and can only move away if the material is heated. Other charge carriers can move, jumping from one atom to another. It is the mobile charge that ultimately becomes superconductive, but superconductivity can only be explained by taking the immobile charge carriers into account too.

"There is interaction between the mobile and the immobile charge carriers, which governs the properties of the system", says Barisi. "Apparently, the immobile charges act as the glue, binding pairs of mobile charge carriers together, creating so-called Cooper pairs, which are the basic idea behind classical superconductors. Once paired the charge carriers can become superconducting and the material can transport the current with zero resistance."

This means that in order to obtain superconductivity, there has to be a subtle balance of mobile and immobile charge carriers. If there are too few localized charge carriers, then there is not enough "glue" to pair the mobile charge carriers. If, on the other hand, there are too few mobile charge carriers, then there is nothing for the "glue" to pair.

In either case, superconductivity is weakened or stops altogether. At optimal middle ground superconductivity persists at remarkably high temperatures. It was challenging to understand that the balance between mobile and immobile charges is changed, as a function of temperature or doping, in a gradual manner.

"We have performed many different experiments with cuprates, collecting large amounts of data. And finally, we can now propose a comprehensive phenomenological picture for superconductivity in cuprates", says Neven Barisic. He has recently published his findings in several journals - most recently in Science Advances - that demonstrate that superconductivity also appears in a gradual manner. This is an important step towards the goal of understanding cuprates and providing a way to search for new, even better superconductors.

If it became possible to create materials which remain superconductors even at room temperature, this would have far reaching consequences for technology. Electronic devices could be built that use hardly any energy at all. Levitating trains could be constructed, using extremely strong superconducting magnets, so that cheap, ultrafast transportation would become possible. "We are not yet near this goal", says Neven Barisic. "But deep understanding of high-temperature superconductivity would pave the way to get there. And, I believe, that we have now taken several important steps in this direction."

Research paper


Related Links
Vienna University of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
New method yields higher transition temperature in superconducting materials
Houston TX (SPX) Jan 28, 2019
Researchers from the University of Houston have reported a new way to raise the transition temperature of superconducting materials, boosting the temperature at which the superconductors are able to operate. The results, reported in the Proceedings of the National Academy of Sciences, suggest a previously unexplored avenue for achieving higher-temperature superconductivity, which offers a number of potential benefits to energy generators and consumers. Electric current can move through super ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
US charges Chinese national for stealing energy company secrets

Making the world hotter: India's expected AC explosion

EU court backs Dyson on vacuum cleaner energy tests

Mining bitcoin uses more energy than Denmark: study

ENERGY TECH
Static electricity could charge our electronics

New method yields higher transition temperature in superconducting materials

Novel device may rapidly control plasma disruptions in a fusion facility

Fiery sighting: A new physics of eruptions that damage fusion experiments

ENERGY TECH
Major companies, cities buying into Texas' green energy boom

EON achieves successful commercial operation and tax equity financing for Stella wind farm

Lidar lights up wind opportunities for Tilt in Australia

US Wind Inc. agrees to sell its New Jersey offshore lease to EDF Renewables North America

ENERGY TECH
BayWa teams up to secure the future of solar power in Victoria

Self-assembling nanomaterial enable cheaper more efficient solar power

New water splitting catalyst could make it easier to generate solar fuel

US underwent a quiet clean energy revolution last year

ENERGY TECH
Framatome companies and Joint Ventures in China are renamed

Hitachi wants nationalisation of UK nuclear project: report

Britain's AECOM, AWE announce nuclear waste storage partnership

Framatome receives $49 million grant to accelerate enhanced accident tolerant fuel development

ENERGY TECH
A powerful catalyst for electrolysis of water that could help harness renewable energy

From toilet to brickyard: Recycling biosolids to make sustainable bricks

Scientists turn carbon emissions into usable energy

Researchers create 'shortcut' to terpene biosynthesis in E. coli

ENERGY TECH
Kremlin denies reports Russia mercenaries protecting Maduro

US urges Venezuela army to accept 'peaceful' power transfer

U.S. fuel prices near month ago levels, unlikely to change

Crude oil prices rise amid renewed Venezuela concerns

ENERGY TECH
'I want you to panic': Swedish teen raises climate alarm at Davos

UN Security Council divided on climate-security link

'We are losing the race' on climate change: UN chief

2018 was fourth hottest year on record: researchers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.