Energy News
ENERGY TECH
Study of disordered rock salts leads to battery breakthrough
illustration only
Study of disordered rock salts leads to battery breakthrough
by Peter Reuell | Department of Nuclear Science and Engineering
Boston MA (SPX) Aug 23, 2024

For the past decade, disordered rock salt has been studied as a potential breakthrough cathode material for use in lithium-ion batteries and a key to creating low-cost, high-energy storage for everything from cell phones to electric vehicles to renewable energy storage.

A new MIT study is making sure the material fulfills that promise.

Led by Ju Li, the Tokyo Electric Power Company Professor in Nuclear Engineering and professor of materials science and engineering, a team of researchers describe a new class of partially disordered rock salt cathode, integrated with polyanions - dubbed disordered rock salt-polyanionic spinel, or DRXPS - that delivers high energy density at high voltages with significantly improved cycling stability.

"There is typically a trade-off in cathode materials between energy density and cycling stability ... and with this work we aim to push the envelope by designing new cathode chemistries," says Yimeng Huang, a postdoc in the Department of Nuclear Science and Engineering and first author of a paper describing the work published in Nature Energy. "(This) material family has high energy density and good cycling stability because it integrates two major types of cathode materials, rock salt and polyanionic olivine, so it has the benefits of both."

Importantly, Li adds, the new material family is primarily composed of manganese, an earth-abundant element that is significantly less expensive than elements like nickel and cobalt, which are typically used in cathodes today.

"Manganese is at least five times less expensive than nickel, and about 30 times less expensive than cobalt," Li says. "Manganese is also the one of the keys to achieving higher energy densities, so having that material be much more earth-abundant is a tremendous advantage."

A possible path to renewable energy infrastructure
That advantage will be particularly critical, Li and his co-authors wrote, as the world looks to build the renewable energy infrastructure needed for a low- or no-carbon future.

Batteries are a particularly important part of that picture, not only for their potential to decarbonize transportation with electric cars, buses, and trucks, but also because they will be essential to addressing the intermittency issues of wind and solar power by storing excess energy, then feeding it back into the grid at night or on calm days, when renewable generation drops.

Given the high cost and relative rarity of materials like cobalt and nickel, they wrote, efforts to rapidly scale up electric storage capacity would likely lead to extreme cost spikes and potentially significant materials shortages.

"If we want to have true electrification of energy generation, transportation, and more, we need earth-abundant batteries to store intermittent photovoltaic and wind power," Li says. "I think this is one of the steps toward that dream."

That sentiment was shared by Gerbrand Ceder, the Samsung Distinguished Chair in Nanoscience and Nanotechnology Research and a professor of materials science and engineering at the University of California at Berkeley.

"Lithium-ion batteries are a critical part of the clean energy transition," Ceder says. "Their continued growth and price decrease depends on the development of inexpensive, high-performance cathode materials made from earth-abundant materials, as presented in this work."

Overcoming obstacles in existing materials
The new study addresses one of the major challenges facing disordered rock salt cathodes - oxygen mobility.

While the materials have long been recognized for offering very high capacity - as much as 350 milliampere-hour per gram - as compared to traditional cathode materials, which typically have capacities of between 190 and 200 milliampere-hour per gram, it is not very stable.

The high capacity is contributed partially by oxygen redox, which is activated when the cathode is charged to high voltages. But when that happens, oxygen becomes mobile, leading to reactions with the electrolyte and degradation of the material, eventually leaving it effectively useless after prolonged cycling.

To overcome those challenges, Huang added another element - phosphorus - that essentially acts like a glue, holding the oxygen in place to mitigate degradation.

"The main innovation here, and the theory behind the design, is that Yimeng added just the right amount of phosphorus, formed so-called polyanions with its neighboring oxygen atoms, into a cation-deficient rock salt structure that can pin them down," Li explains. "That allows us to basically stop the percolating oxygen transport due to strong covalent bonding between phosphorus and oxygen ... meaning we can both utilize the oxygen-contributed capacity, but also have good stability as well."

That ability to charge batteries to higher voltages, Li says, is crucial because it allows for simpler systems to manage the energy they store.

"You can say the quality of the energy is higher," he says. "The higher the voltage per cell, then the less you need to connect them in series in the battery pack, and the simpler the battery management system."

Pointing the way to future studies
While the cathode material described in the study could have a transformative impact on lithium-ion battery technology, there are still several avenues for study going forward.

Among the areas for future study, Huang says, are efforts to explore new ways to fabricate the material, particularly for morphology and scalability considerations.

"Right now, we are using high-energy ball milling for mechanochemical synthesis, and ... the resulting morphology is non-uniform and has small average particle size (about 150 nanometers). This method is also not quite scalable," he says. "We are trying to achieve a more uniform morphology with larger particle sizes using some alternate synthesis methods, which would allow us to increase the volumetric energy density of the material and may allow us to explore some coating methods ... which could further improve the battery performance. The future methods, of course, should be industrially scalable."

In addition, he says, the disordered rock salt material by itself is not a particularly good conductor, so significant amounts of carbon - as much as 20 weight percent of the cathode paste - were added to boost its conductivity. If the team can reduce the carbon content in the electrode without sacrificing performance, there will be higher active material content in a battery, leading to an increased practical energy density.

"In this paper, we just used Super P, a typical conductive carbon consisting of nanospheres, but they're not very efficient," Huang says. "We are now exploring using carbon nanotubes, which could reduce the carbon content to just 1 or 2 weight percent, which could allow us to dramatically increase the amount of the active cathode material."

Aside from decreasing carbon content, making thick electrodes, he adds, is yet another way to increase the practical energy density of the battery. This is another area of research that the team is working on.

"This is only the beginning of DRXPS research, since we only explored a few chemistries within its vast compositional space," he continues. "We can play around with different ratios of lithium, manganese, phosphorus, and oxygen, and with various combinations of other polyanion-forming elements such as boron, silicon, and sulfur."

With optimized compositions, more scalable synthesis methods, better morphology that allows for uniform coatings, lower carbon content, and thicker electrodes, he says, the DRXPS cathode family is very promising in applications of electric vehicles and grid storage, and possibly even in consumer electronics, where the volumetric energy density is very important.

Research Report:"Integrated rocksalt-polyanion cathodes with excess lithium and stabilized cycling"

Related Links
Department of Nuclear Science and Engineering
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Argentine lithium a boon for some, doom for others
Susques, Argentina (AFP) Aug 14, 2024
Anahi Jorge, 23, works for a lithium extraction company in Argentina, earning four times the salary of a local government worker in her village of Susques. And while she welcomes the income of about $1,700 per month - a fortune for most in economic-crisis-riddled Argentina - she laments the impact on critical water resources in her town and the wider Jujuy province. "Lithium is good and bad at the same time," Jorge told AFP. "The water issue is harmful to us, but it (lithium) is good for t ... read more

ENERGY TECH
Russia's largest strike in weeks hits Ukraine's power grid

Combining climate measures key to slashing emissions

States' Renewable Energy Policies Show Cross-Border Impacts

China plans to adopt volume-based emissions reduction targets

ENERGY TECH
Innovative smart windows cool buildings and generate electricity without external power

Study of disordered rock salts leads to battery breakthrough

Quenching the intense heat of a fusion plasma may require a well-placed liquid metal evaporator

More durable metals for fusion power reactors

ENERGY TECH
India's green energy wind drive hits desert herders hard

MIT engineers' new theory could improve the design and operation of wind farms

Engineers Develop Cost-Effective Seafloor Testing Device for Offshore Wind Farms

ENERGY TECH
China's solar sector blazes trail in commitment to renewables

Scientists develop customizable perovskite waveguides with edge lasing capabilities

Terahertz spectroscopy offers real-time insight into perovskite aging

Energy-hungry Singapore eyes deserts, forest for renewables

ENERGY TECH
UN nuclear head at Russian plant warns over fighting

EDF, Westinghouse protest S.Korean rival's Czech nuclear deal

UN nuclear head to visit Russian plant near fighting

Putin accuses Ukraine of trying to attack Kursk nuclear plant

ENERGY TECH
Turning bacteria into bioplastic factories

UCF Researcher Develops Nature-Inspired Technology to Convert CO2 into Useful Fuels and Chemicals

In Colombia, hungry beetle larvae combat trash buildup

Polymer-Coated Copper Electrodes Enhance Selectivity in CO2 Conversion to Multicarbon Fuels

ENERGY TECH
Pentagon: Houthi-attacked tanker is leaking oil

Iraq fire tears through fuel tankers, kills one driver

ExxonMobil expects global oil demand near current levels in 2050

Equinor to extract Norway oil near 'current levels' till 2035

ENERGY TECH
Cannon-Brookes: Australia's billionaire climate warrior

Environmental group lawsuit accuses Finland govt of climate inaction

Trump's strategy on climate? Amplify myths about Harris

Top UN court to hold climate justice hearings in December

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.