Energy News  
Study Shows Nanoparticles Could Damage Plant Life

The report, published in a recent issue of "Toxicology Letters," shows that nanoparticles of alumina (aluminum oxide) slowed the growth of roots in five species of plants - corn, cucumber, cabbage, carrot and soybean.

Newark NJ (SPX) Nov 23, 2005
A nanoparticle commonly used in industry could have a damaging effect on plant life according to a report by an environmental scientist at New Jersey Institute of Technology (NJIT).

The report, published in a recent issue of "Toxicology Letters," shows that nanoparticles of alumina (aluminum oxide) slowed the growth of roots in five species of plants - corn, cucumber, cabbage, carrot and soybean.

Alumina nanoparticles are commonly used in scratch-resistant transparent coatings, sunscreen lotions that provide transparent-UV protection and environmental catalysts that reduce pollution, said Daniel J. Watts, PhD, the lead author of the study.

"Before this study there was an assumption that nanoparticles had no effect on plants," said Watts, executive director of the York Center for Environmental Engineering and Science and Panasonic Chair in Sustainability at NJIT.

"This study makes the observation that seedlings can interact with nanoparticles such as alumina, which can have a harmful effect on seedlings and perhaps stunt the growth of plants. "Other nanoparticles included in the study, such as silica, did not show this effect," Watts added. He did the study with Ling Yang, a doctoral student who recently graduated from NJIT.

The authors conducted the study by allowing seeds to germinate on wet filter paper in Petri dishes, after which they added known quantities of nano-sized alumina suspended in water. The control portion of the experiment was treated only with water, and the authors observed the experiment for seven days. During that time, they measured the differences in the growth of the plants' roots, which were shown to be statistically significant.

"We suppose that the surface characteristics of the nanoparticles played an important role in slowing the growth of the roots," said Watts.

"The smaller the particle, the larger is the total amount of surface area per unit weight. So the smaller you make the particles, the larger is the surface area, which we suspect is what contributes to the growth-slowing interaction between the seeds and the nanoparticles. The small size of the nanoparticles may be changed by the nanoparticles aggregating or clumping together."

But what is still not understood, said Watts, is the nature of the interaction between the nanoparticle and the root of the seed. "What is the mechanism of the interaction between the particle and the root? That we don't know as yet," he said.

Nanoparticles can be deposited into air by exhaust systems, chimneys or smoke stacks, said Watts. The particles can also mix with rainwater and snow and gradually work their way into soil. It is difficult to take results from a lab experiment and conclude that is what happens in the real world, said Watts.

"But we speculate that air deposits of nanoparticles or water transport of them are ways in which nanoparticles could mix with plant life," he said.

Community
Email This Article
Comment On This Article

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Scientists Create Nanostructures
Berlin (UPI) Nov 21, 2005
German scientists say they've found combining a scanning tunneling microscope and atoms bound to a surface can create nanostructures.







  • SatCon To Join GA's Superconducting DC Homopolar Motor Development Team
  • Clean Energy Changes Life Of People In Remote Regions
  • Argonne Researchers Discover Ways To Make Magnets Last Longer
  • Nigeria's High Court Determines Gas Flaring Illegal

  • Blair Pressed Over Nuclear Power Option, Depsite Costs
  • US Unblocks Foreign Military Financing For Indonesia
  • Blair Looking At 'All Options' Amidst British Nuclear Debate
  • Blair Urged To Approve New Generation Of Nuclear Reactors

  • Getting To The TOPP Of Houston's Air Pollution
  • Scientists Seek Sprite Light Source



  • India To Protect Its Farmers
  • Conservationists Appalled By Thailand's Buffet Of Exotic Wildlife
  • Tomatosphere: Tomato Seeds In Students' Hands, After 18 Months In Space
  • Australia Seeks More Palatable Name For Kangaroo Steaks

  • GM Hires Russian Nuclear Scientists To Develop New Auto Technology
  • Japan Creates The World's Fastest Electric Sedan
  • Motorists To Pay 'Congestion' Charge Over Broader Swath Of London
  • Solar Cars Driving Towards A Hydrogen Future

  • Geneva Aerospace Extends Its Flight Tech To Raspet's Ultra-Light Glider
  • NGC's E-10A Multi-Sensor Command-And-Control Aircraft Program Concludes Platform Design Review
  • New Wind Tunnel Aimed At Making Airplanes Quieter To Those On Ground
  • L-3 Communications' SPAR Aerospace Launches Herc 2020

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement