Energy News  
ENERGY TECH
Smallest biosupercapacitor provides energy for biomedical applications
by Staff Writers
Chemnitz, Germany (SPX) Aug 24, 2021

An array of 90 tubular nano-biosupercapacitors (nBSCs) on the fingertip enable autarkic operation of sensors in blood.

The miniaturization of microelectronic sensor technology, microelectronic robots or intravascular implants is progressing rapidly. However, it also poses major challenges for research. One of the biggest is the development of tiny but efficient energy storage devices that enable the operation of autonomously working microsystems - in more and more smaller areas of the human body for example. In addition, these energy storage devices must be bio-compatible if they are to be used in the body at all. Now there is a prototype that combines these essential properties.

The breakthrough was achieved by an international research team led by Prof. Dr. Oliver G. Schmidt, Professorship of Materials Systems for Nanoelectronics at Chemnitz University of Technology, initiator of the Center for Materials, Architectures and Integration of Nanomembranes (MAIN) at Chemnitz University of Technology and director at the Leibniz Institute for Solid State and Materials Research (IFW) Dresden. The Leibniz Institute of Polymer Research Dresden (IPF) was also involved in the study as a cooperation partner.

In the current issue of Nature Communication, the researchers report on the smallest microsupercapacitors to date, which already functions in (artificial) blood vessels and can be used as an energy source for a tiny sensor system to measure pH.

This storage system opens up possibilities for intravascular implants and microrobotic systems for next-generation biomedicine that could operate in hard-to-reach small spaces deep inside the human body. For example, real-time detection of blood pH can help predict early tumor growing. "It is extremely encouraging to see how new, extremely flexible, and adaptive microelectronics is making it into the miniaturized world of biological systems", says research group leader Prof. Dr. Oliver G. Schmidt, who is extremely pleased with this research success.

The fabrication of the samples and the investigation of the biosupercapacitor were largely carried out at the Research Center MAIN at Chemnitz University of Technology.

"The architecture of our nano-bio supercapacitors offers the first potential solution to one of the biggest challenges - tiny integrated energy storage devices that enable the self-sufficient operation of multifunctional microsystems," says Dr. Vineeth Kumar, researcher in Prof. Schmidt's team and a research associate at the MAIN research center.

Smaller than a speck of dust - voltage comparable to a AAA battery
Ever smaller energy storage devices in the submillimeter range - so-called "nano-supercapacitors" (nBSC) - for even smaller microelectronic components are not only a major technical challenge, however. This is because, as a rule, these supercapacitors do not use biocompatible materials but, for example, corrosive electrolytes and quickly discharge themselves in the event of defects and contamination.

Both aspects make them unsuitable for biomedical applications in the body. So-called "biosupercapacitors (BSCs)" offer a solution. They have two outstanding properties: they are fully biocompatible, which means that they can be used in body fluids such as blood and can be used for further medical studies.

In addition, biosupercapacitors can compensate for self-discharge behavior through bio-electrochemical reactions. In doing so, they even benefit from the body's own reactions. This is because, in addition to typical charge storage reactions of a supercapacitor, redox enzymatic reactions and living cells naturally present in the blood increase the performance of the device by 40%.

Currently, the smallest such energy storage devices are larger than 3 mm3. Prof. Oliver Schmidt's team has now succeeded in producing a 3,000 times smaller tubular nBSC, which, with a volume of 0.001 mm3 (1 nanolitre), occupies less space than a grain of dust and yet delivers up to 1.6 V supply voltage for microelectronic sensors.

This energy can be used for a sensor system in the blood, for example. The power level also is roughly equivalent to the voltage of a standard AAA battery, although the actual current flow on these smallest scales is of course significantly lower. The flexible tubular geometry of the nano-biosupercapacitor provides efficient self-protection against deformations caused by pulsating blood or muscle contraction. At full capacity, the presented nano-biosupercapacitor can operate a complex fully integrated sensor system for measuring the pH value in blood.

Thanks to Origami structure technology: flexible, robust, tiny Origami structure technology involves placing the materials required for the nBSC components on a wafer-thin surface under high mechanical tension. When the material layers are subsequently detached from the surface in a controlled manner, the strain energy is released and the layers wind themselves into compact 3D devices with high accuracy and yield (95%).

The nano-biosupercapacitors produced in this way were tested in three solutions called electrolytes: Saline, blood plasma, and blood. In all three electrolytes, energy storage was sufficiently successful, albeit with varying efficiency. In blood, the nano-biosupercapacitor showed excellent lifetime, holding up to 70% of its initial capacity even after 16 hours. A proton exchange separator (PES) was used to suppress the rapid self-discharge.

Performance stability even under realistic conditions
In order to maintain natural body functions in different situations, the flow characteristics of the blood and the pressure in the vessels are under constant change. Blood flow pulsates and varies according to vessel diameter and blood pressure. Any implantable system within the circulatory system must withstand these physiological conditions while maintaining stable performance.

The team therefore studied the performance of their development - similar to a wind tunnel - in so-called microfluidic channels with diameters of 120 to 150 um (0.12 to 0.15 mm) to mimic blood vessels of different sizes. In these channels, the researchers simulated and tested the behavior of their energy storage devices under different flow and pressure conditions. They found that the nano-biosupercapacitors can provide their power well and stably under physiologically relevant conditions.

Self-contained sensor technology can support diagnostics - such as tumor diagnostics
The hydrogen potential (pH) of blood is subject to fluctuations. Continuous measurement of the pH can thus help in the early detection of tumors, for example. For this purpose, the researchers developed a pH sensor that is supplied with energy by the nano-biosupercapacitor.

The 5 um thin film transistor (TFT) technology previously established in Prof. Oliver Schmidt's research team could be used to develop a ring oscillator with exceptional mechanical flexibility, operating at low power (nW to uW) and high frequencies (up to 100MHz).

For the current project, the team used a nBSC based ring oscillator. The team integrated a pH-sensitive BSC into the ring oscillator so that there is a change in output frequency depending on the pH of the electrolyte. This pH-sensitive ring oscillator was also formed into a tubular 3D geometry using the "Swiss-roll" Origami technique, creating a fully integrated and ultra-compact system of energy storage and sensor.

The hollow inner core of this micro sensor system serves as a channel for the blood plasma. In addition, three nBSCs connected in series with the sensor enable particularly efficient and self-sufficient pH measurement.

These properties open up a wide range of possible applications, for example in diagnostics and medication.

Research Report: "Nano-biosupercapacitors enable autarkic sensor operation in blood"


Related Links
Chemnitz University Of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
UK-based consortium established to develop prototype solid-state batteries
Harwell UK (SPX) Aug 20, 2021
A consortium of seven UK-based organisations has signed a memorandum of understanding to combine ambitions to develop world-leading prototype solid-state battery technology, targeting automotive applications. Solid-state batteries offer significant potential advantages over conventional lithium-ion batteries and could be transformational in meeting the UK's net zero commitments through the electrification of transport. The successful outcome of the collaboration would be to harness andindust ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Australia rejects climate targets despite damning UN report

China signals steady course after UN climate warning

US says cannot delay 'ambitious' action to protect climate

Areas of Iraqi province lose power after attack on pylons

ENERGY TECH
An innovative process which prevents irreversible energy loss in batteries

PPPL-hosted workshop displays substantial progress in battling fusion disruptions

New technique for large-scale energy storage developed by polymer scientist

Smallest biosupercapacitor provides energy for biomedical applications

ENERGY TECH
How do wind turbines respond to winds, ground motion during earthquakes?

For golden eagles, habitat loss is main threat from wind farms

Wind turbines can be clustered while avoiding turbulent wakes of their neighbors

Shell, France's EDF to build US offshore windfarm

ENERGY TECH
Common solar tech can power smart devices indoors, NIST study finds

Perovskite solar cells: Interfacial loss mechanisms revealed

NASA spacewalk briefing to highlight new solar array installation

The dream artificial photosynthesis technology ventures from the laboratory

ENERGY TECH
Framatome and BBF achieve testing milestone for medical sterilization transport system

Framatome acquires nuclear power systems division of RCM Technologies Canada Corp

Framatome's steam generator replacement expertise supports long-term operations in Canada

China nuclear reactor shut down for maintenance after damage

ENERGY TECH
Maersk orders eight carbon-neutral container ships

Faster and cheaper ethanol-to-jet-fuel on the horizon

Turning hazelnut shells into potential renewable energy source

NASA awards $750,000 in competition to convert carbon dioxide into sugar

ENERGY TECH
Green hydrogen: Focus on the catalyst surface

Survey forecasts increasing CO2 emissions from oil refineries

Study suggests hydraulic fracturing can impact surface water quality

UT researchers pushing innovative solution at DOE's Hydrogen Earth Shot kickoff

ENERGY TECH
UN hot on the trail of temperature records

Three in four say climate 'tipping points' close

Global warming begets more warming, new paleoclimate study finds

Gates offers $1.5 bn in climate help if US takes legislative action









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.