Energy News  
ENERGY TECH
Scientists solve a magnesium mystery in rechargeable battery performance
by Staff Writers
Berkeley CA (SPX) Oct 20, 2017


This is a photo illustration showing rechargeable batteries in the shape of an automobile.

Rechargeable batteries based on magnesium, rather than lithium, have the potential to extend electric vehicle range by packing more energy into smaller batteries. But unforeseen chemical roadblocks have slowed scientific progress.

And the places where solid meets liquid - where the oppositely charged battery electrodes interact with the surrounding chemical mixture known as the electrolyte - are the known problem spots.

Now, a research team at the U.S. Department of Energy's Joint Center for Energy Storage Research, led by scientists at Lawrence Berkeley National Laboratory (Berkeley Lab), has discovered a surprising set of chemical reactions involving magnesium that degrade battery performance even before the battery can be charged up.

The findings could be relevant to other battery materials, and could steer the design of next-generation batteries toward workarounds that avoid these newly identified pitfalls.

The team used X-ray experiments, theoretical modeling, and supercomputer simulations to develop a full understanding of the chemical breakdown of a liquid electrolyte occurring within tens of nanometers of an electrode surface that degrades battery performance. Their findings are published online in the journal Chemistry of Materials.

The battery they were testing featured magnesium metal as its negative electrode (the anode) in contact with an electrolyte composed of a liquid (a type of solvent known as diglyme) and a dissolved salt, Mg(TFSI)2.

While the combination of materials they used were believed to be compatible and nonreactive in the battery's resting state, experiments at Berkeley Lab's Advanced Light Source (ALS), an X-ray source called a synchrotron, uncovered that this is not the case and led the study in new directions.

"People had thought the problems with these materials occurred during the battery's charging, but instead the experiments indicated that there was already some activity," said David Prendergast, who directs the Theory of Nanostructured Materials Facility at the Molecular Foundry and served as one of the study's leaders.

"At that point it got very interesting," he said. "What could possibly cause these reactions between substances that are supposed to be stable under these conditions?"

Molecular Foundry researchers developed detailed simulations of the point where the electrode and electrolyte meet, known as the interface, indicating that no spontaneous chemical reactions should occur under ideal conditions, either. The simulations, though, did not account for all of the chemical details.

"Prior to our investigations," said Ethan Crumlin, an ALS scientist who coordinated the X-ray experiments and co-led the study with Prendergast, "there were suspicions about the behavior of these materials and possible connections to poor battery performance, but they hadn't been confirmed in a working battery."

Commercially popular lithium-ion batteries, which power many portable electronic devices (such as mobile phones, laptops, and power tools) and a growing fleet of electric vehicles, shuttle lithium ions - lithium atoms that become charged by shedding an electron - back and forth between the two battery electrodes. These electrode materials are porous at the atomic scale and are alternatively loaded up or emptied of lithium ions as the battery is charged or discharged.

In this type of battery, the negative electrode is typically composed of carbon, which has a more limited capacity for storing these lithium ions than other materials would.

So increasing the density of stored lithium by using another material would make for lighter, smaller, more powerful batteries. Using lithium metal in the electrode, for example, can pack in more lithium ions in the same space, though it is a highly reactive substance that burns when exposed to air, and requires further research on how to best package and protect it for long-term stability.

Magnesium metal has a higher energy density than lithium metal, meaning you can potentially store more energy in a battery of the same size if you use magnesium rather than lithium.

Magnesium is also more stable than lithium. Its surface forms a self-protecting "oxidized" layer as it reacts with moisture and oxygen in the air. But within a battery, this oxidized layer is believed to reduce efficiency and shorten battery life, so researchers are looking for ways to avoid its formation.

To explore the formation of this layer in more detail, the team employed a unique X-ray technique developed recently at the ALS, called APXPS (ambient pressure X-ray photoelectron spectroscopy). This new technique is sensitive to the chemistry occurring at the interface of a solid and liquid, which makes it an ideal tool to explore battery chemistry at the surface of the electrode, where it meets the liquid electrolyte.

Even before a current was fed into the test battery, the X-ray results showed signs of chemical decomposition of the electrolyte, specifically at the interface of the magnesium electrode. The findings forced researchers to rethink their molecular-scale picture of these materials and how they interact.

What they determined is that the self-stabilizing, thin oxide surface layer that forms on the magnesium has defects and impurities that drive unwanted reactions.

"It's not the metal itself, or its oxides, that are a problem," Prendergast said. "It's the fact you can have imperfections in the oxidized surface. These little disparities become sites for reactions. It feeds itself in this way."

A further round of simulations, which proposed possible defects in the oxidized magnesium surface, showed that defects in the oxidized surface layer of the anode can expose magnesium ions that then act as traps for the electrolyte's molecules.

If free-floating hydroxide ions - molecules containing a single oxygen atom bound to a hydrogen atom that can be formed as trace amounts of water react with the magnesium metal - meet these surface-bound molecules, they will react.

This wastes electrolyte, drying out the battery over time. And the products of these reactions foul the anode's surface, impairing the battery's function.

It took several iterations back and forth, between the experimental and theoretical members of the team, to develop a model consistent with the X-ray measurements. The efforts were supported by millions of hours' worth of computing power at the Lab's National Energy Research Scientific Computing Center.

Researchers noted the importance of having access to X-ray techniques, nanoscale expertise, and computing resources at the same Lab.

The results could be relevant to other types of battery materials, too, including prototypes based on lithium or aluminum metal. Prendergast said, "This could be a more general phenomenon defining electrolyte stability."

Crumlin added, "We've already started running new simulations that could show us how to modify the electrolyte to reduce the instability of these reactions." Likewise, he said, it may be possible to tailor the surface of the magnesium to reduce or eliminate some of the unwanted chemical reactivity.

"Rather than allowing it to create its own interface, you could construct it yourself to control and stabilize the interface chemistry," he added. "Right now it leads to uncontrollable events."

Research paper

ENERGY TECH
Sulfur may be key for safe rechargeable lithium batteries
University Park PA (SPX) Oct 16, 2017
We have come a long way from leaky sulfur-acid automobile batteries, but modern lithium batteries still have some down sides. Now a team of Penn State engineers have a different type of lithium sulfur battery that could be more efficient, less expensive and safer. "We demonstrated this method in a coin battery," said Donghai Wang, associate professor of mechanical engineering. "But, I thin ... read more

Related Links
Lawrence Berkeley National Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Japan faces challenges in cutting CO2, Moody's finds

IEA: An electrified world would cost $31B per year to achieve

'Fuel-secure' steps in Washington counterintuitive, green group says

SLAC-led project will use AI to prevent or minimize electric grid failures

ENERGY TECH
Electronic entropy enhances water splitting

Sulfur may be key for safe rechargeable lithium batteries

PPPL takes detailed look at 2-D structure of turbulence in tokamaks

The blob that ate the tokamak

ENERGY TECH
Construction to begin on $160 million Industry Leading Hybrid Renewable Energy Project

A kite that might fly

Scotland outreach to Canada yields wind energy investment

First floating wind farm starts operation in Scotland

ENERGY TECH
German utility sees potential in rooftop solar

How solar peaker plants could replace gas peakers

Transparent solar technology represents 'wave of the future'

Clean Energy Collective Starts Construction on SCE and G Community Solar Facilities

ENERGY TECH
South Korea to push ahead with nuclear power plants

AREVA NP installs a system allowing flexible electricity generation at Goesgen nuclear power plant

MATRIX pitched as a game changer for used fuel dry storage

Dessel: a new step forward with the dismantling of the site

ENERGY TECH
Expanding Brazilian sugarcane could dent global CO2 emissions

Stiff fibers spun from slime

Converting carbon dioxide to carbon monoxide using water, electricity

Separating methane and CO2 will become more efficient

ENERGY TECH
High gas prices may crimp holiday spending, AAA finds

Hess goes on divestment streak to fund mega oil field

Bullish signals emerging for crude oil prices

IHS: Investments moving away from U.S. Gulf of Mexico

ENERGY TECH
US ocean observation critical to understanding climate change

Geologic evidence is the forerunner of ominous prospects for a warming earth

'Plan B': Seven ways to engineer the climate

British government unveils green spending plans









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.