Energy News  
ENERGY TECH
Scientists identify another reason why batteries can't charge in minutes
by Staff Writers
Lemont IL (SPX) Dec 06, 2021

This illustration shows intercalation of lithium ions (green) in a graphite anode.

Researchers find new issue complicating fast charging. Haste makes waste, as the saying goes. Such a maxim may be especially true of batteries, thanks to a new study that seeks to identify the reasons that cause the performance of fast charged lithium-ion batteries to degrade in electric vehicles.

In new research from the U.S. Department of Energy's (DOE) Argonne National Laboratory, scientists have found interesting chemical behavior of one of the battery's two terminals as the battery is charged and discharged.

Lithium-ion batteries contain both a positively charged cathode and a negatively charged anode, which are separated by a material called an electrolyte that moves lithium ions between them. The anode in these batteries is typically made out of graphite - the same material found in many pencils.

In lithium-ion batteries, however, the graphite is assembled out of small particles. Inside these particles, the lithium ions can insert themselves in a process called intercalation. When intercalation happens properly, the battery can successfully charge and discharge.

When a battery is charged too quickly, however, intercalation becomes a trickier business. Instead of smoothly getting into the graphite, the lithium ions tend to aggregate on top of the anode's surface, resulting in a "plating" effect that can cause terminal damage - no pun intended - to a battery.

"Plating is one of the main causes of impaired battery performance during fast charging," said Argonne battery scientist Daniel Abraham, an author of the study. "As we charged the battery quickly, we found that in addition to the plating on the anode surface there was a build up of reaction products inside the electrode pores." As a result, the anode itself undergoes some degree of irreversible expansion, impairing battery performance.

Using a technique called scanning electron nanodiffraction, Abraham and his colleagues from the University of Illinois Urbana-Champaign observed another notable change to the graphite particles. At the atomic level, the lattice of graphite atoms at the particle edges becomes distorted because of the repeated fast charging, hindering the intercalation process.

"Basically, what we see is that the atomic network in the graphite becomes warped, and this prevents lithium ions from finding their 'home' inside the particles - instead, they plate on the particles," he said.

"The faster we charge our battery, the more atomically disordered the anode will become, which will ultimately prevent the lithium ions from being able to move back and forth," Abraham said. "The key is to find ways to either prevent this loss of organization or to somehow modify the graphite particles so that the lithium ions can intercalate more efficiently."

Research Report: Increased Disorder at Graphite Particle Edges Revealed by Multi-length Scale Characterization of Anodes from Fast-Charged Lithium-Ion Cells


Related Links
Argonne National Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
An energy-storage solution that flows like soft-serve ice cream
Boston MA (SPX) Dec 01, 2021
Batteries made from an electrically conductive mixture the consistency of molasses could help solve a critical piece of the decarbonization puzzle. An interdisciplinary team from MIT has found that an electrochemical technology called a semisolid flow battery can be a cost-competitive form of energy storage and backup for variable renewable energy (VRE) sources such as wind and solar. The group's research is described in a paper published in Joule. "The transition to clean energy requires energy s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Biden calls for carbon neutral federal government by 2050

30,000 UK homes still without power after storm

Accelerated renewables-based electrification paves the way for a post-fossil future

China's carbon emissions fall for first time since Covid lockdowns

ENERGY TECH
Scientists identify another reason why batteries can't charge in minutes

Combined heat and power as a platform for clean energy systems

Battery 'dream technology' a step closer to reality with new discovery

Sodium-based material yields stable alternative to lithium-ion batteries

ENERGY TECH
DLR starts cooperation with ENERCON

RWE ups renewables investment as end to coal looms

Green hydrogen from expanded wind power in China

Scientists bring efficiency to expanding offshore wind energy

ENERGY TECH
Tiny crystal of power

Microgrids and solar reduce risk of power outages

Scientists propose novel bilayer structure for crystalline silicon solar cells

Perovskite solar cells soar to new heights

ENERGY TECH
Framatome's fuel fabrication technology licensed for new Kazakhstan manufacturing facility

Framatome and Rosatom sign long-term cooperation agreement

GE Hitachi boosts VR solutions for nuclear energy industry

Framatome delivers first machining simulators to the Louis Armand vocational school in Jeumont

ENERGY TECH
DARPA transitions synthetic biomanufacturing technologies to support national security objectives

Oak Ridge National Laboratory, Tuskegee University collaborate on advanced bioderived materials research

Tasmania to be site of Australia's first bioLNG facility

Microbes can provide sustainable hydrocarbons for the petrochemical industry

ENERGY TECH
S.Africa energy minister defends oil exploration plans

US eyes NordStream pipeline as Russian pressure point over Ukraine

Protesters hit S.Africa beaches to oppose oil exploration

Shell exits North Sea oilfield project

ENERGY TECH
NGO awards triple-A climate rating to just 14 firms

When variations in Earth's orbit drive biological evolution

Above-average temperatures despite La Nina: UN

Climate change 2021: There's no turning back now









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.