Scientists harvest electricity from tears by Brooks Hays Washington (UPI) Oct 1, 2017 Sad about the battery drain on your new smartphone? A good cry might help. Scientists have found a way to harvest electricity from tears. In recent lab experiments, researcher at the University of Limerick's Bernal Institute, in Ireland, found lysozyme crystals yield an electric current when pressurized. Lysozyme is found in tears and saliva, as well as the whites of bird eggs and the milk of mammals. Quartz also possesses the ability to generate electricity when pressurized -- a quality known as piezoelectricity. The ability makes quartz useful for a variety technologies. The material is often used to make resonators inside mobile phones, ultrasound devices and other types of sensors. "While piezoelectricity is used all around us, the capacity to generate electricity from this particular protein had not been explored," Aimee Stapleton, a physicist at the Bernal Institute, said in a news release. "The extent of the piezoelectricity in lysozyme crystals is significant. It is of the same order of magnitude found in quartz. However, because it is a biological material, it is non toxic so could have many innovative applications such as electroactive, anti-microbial coatings for medical implants." The precise structure of lysozyme crystals was the first enzyme structure and protein structure discovered and described by scientists. It was been frequently studied, and yet, the latest research is the first to describe the crystals' piezoelectricity. "Crystals are the gold-standard for measuring piezoelectricity in non-biological materials. Our team has shown that the same approach can be taken in understanding this effect in biology," said Tofail Syed, a physics professor at at the University of Limerick. "This is a new approach as scientists so far have tried to understand piezoelectricity in biology using complex hierarchical structures such as tissues, cells or polypeptides rather than investigating simpler fundamental building blocks." Scientists believe their research -- detailed this week in the journal Applied Physics Letters -- could be used to design biocompatible piezoelectric energy harvesters for biomedical devices. Many conventional harvesters contain toxic elements like lead. "The impact of this discovery in the field of biological piezoelectricity will be huge and Bernal scientists are leading from the front the progress in this field," said Luuk van der Wielen, director of Bernal Institute.
Washington DC (SPX) Oct 02, 2017 The production of nano-scale devices has drastically increased with the rise in technological applications, yet a major drawback to the functionality of nano-sized systems is the need for an equally small energy resource. To address this need, Hamid Foruzande, Ali Hajnayeb and Amin Yaghootian from the Shahid Charmran University of Ahvaz in Iran have been modeling new piezoelectric energy h ... read more Related Links Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |