Energy News  
ENERGY TECH
Scientists discover new electrolyte for solid-state lithium-ion batteries
by Staff Writers
Lemont IL (SPX) Feb 17, 2022

Chlorine-based electrolytes like the one shown here are offering improved performance for solid-state lithium-ion batteries. (Image by Linda Nazar/University of Waterloo)

New battery material offers promise for the development of all-solid batteries.

In the quest for the perfect battery, scientists have two primary goals: create a device that can store a great deal of energy and do it safely. Many batteries contain liquid electrolytes, which are potentially flammable.

As a result, solid-state lithium-ion batteries, which consist of entirely solid components, have become increasingly attractive to scientists because they offer an enticing combination of higher safety and increased energy density - which is how much energy the battery can store for a given volume.

Researchers from the University of Waterloo, Canada, who are members of the Joint Center for Energy Storage Research (JCESR), headquartered at the U.S. Department of Energy's (DOE) Argonne National Laboratory, have discovered a new solid electrolyte that offers several important advantages.

This electrolyte, composed of lithium, scandium, indium and chlorine, conducts lithium ions well but electrons poorly. This combination is essential to creating an all-solid-state battery that functions without significantly losing capacity for over a hundred cycles at high voltage (above 4 volts) and thousands of cycles at intermediate voltage. The chloride nature of the electrolyte is key to its stability at operating conditions above 4 volts - meaning it is suitable for typical cathode materials that form the mainstay of today's lithium-ion cells.

"The main attraction of a solid-state electrolyte is that it can't catch fire, and it allows for efficient placement in the battery cell; we were pleased to demonstrate stable high-voltage operation," said Linda Nazar, a Distinguished Research Professor of Chemistry at UWaterloo and a long-time member of JCESR.

Current iterations of solid-state electrolytes focus heavily on sulfides, which oxidize and degrade above 2.5 volts. Therefore, they require the incorporation of an insulating coating around the cathode material that operates above 4 volts, which impairs the ability of electrons and lithium ions to move from the electrolyte and into the cathode.

"With sulfide electrolytes, you have a kind of conundrum - you want to electronically isolate the electrolyte from the cathode so it doesn't oxidize, but you still require electronic conductivity in the cathode material," Nazar said.

While Nazar's group wasn't the first to devise a chloride electrolyte, the decision to swap out half of the indium for scandium based on their previous work proved to be a winner in terms of lower electronic and higher ionic conductivity. ?"Chloride electrolytes have become increasingly attractive because they oxidize only at high voltages, and some are chemically compatible with the best cathodes we have," Nazar said. ?"There's been a few of them reported recently, but we designed one with distinct advantages."

One chemical key to the ionic conductivity lay in the material's crisscrossing 3D structure called a spinel. The researchers had to balance two competing desires - to load the spinel with as many charge carrying ions as possible, but also to leave sites open for the ions to move through. ?"You might think of it like trying to a host a dance - you want people to come, but you don't want it to be too crowded," Nazar said.

According to Nazar, an ideal situation would be to have half the sites in the spinel structure be lithium occupied while the other half remained open, but she explained that creating that situation is hard to design.

In addition to the good ionic conductivity of the lithium, Nazar and her colleagues needed to make sure that the electrons could not move easily through the electrolyte to trigger its decomposition at high voltage. ?"Imagine a game of hopscotch," she said. ?"Even if you're only trying to hop from the first square to the second square, if you can create a wall that makes it difficult for the electrons, in our case, to jump over, that is another advantage of this solid electrolyte."

Nazar said that it is not yet clear why the electronic conductivity is lower than many previously reported chloride electrolytes, but it helps establish a clean interface between the cathode material and solid electrolyte, a fact that is largely responsible for the stable performance even with high amounts of active material in the cathode.

Research Report: "High areal capacity, long cycle life 4V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes"


Related Links
Argonne National Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
NASA challenges students to discover what powers them
Cleveland OH (SPX) Feb 16, 2022
NASA is inviting students to participate in an essay contest to explore how it powers some of its most famous missions. The contest also encourages participants to learn something about themselves in the process. The Power to Explore Challenge, open to K-12 students in U.S. public, private, and homeschools, is accepting entries from Tuesday, Feb. 15 through Wednesday, April 13. The competition asks students to learn about Radioisotope Power Systems (RPS), a type of nuclear battery that NASA uses t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Australia's largest power firm rejects green takeover bid

Maine policymakers make bold push for publicly owned power

Paris starts building 'Triangle' tower despite green opposition

Vietnam arrests green activist on tax charges

ENERGY TECH
Can the Salton Sea geothermal field prevent the coming lithium shortage?

Scientists discover new electrolyte for solid-state lithium-ion batteries

Quantifying California's lithium valley: can it power our EV revolution?

"Impossible" breakthrough brings fusion energy device closer to realization

ENERGY TECH
Turbine 'torture' for Greek islanders as wind farms proliferate

Jet stream models help inform US offshore wind development

Wind powers change in England's industrial heartland

Owl wing design reduces aircraft, wind turbine noise pollution

ENERGY TECH
Perovskite Solar Modules with a marble look

Increasing efficiency in two-terminal tandem solar cells

Solar-powered system offers a route to inexpensive desalination

Disorder-engineered inorganic nanocrystals set a new efficiency record for ultrathin solar cells

ENERGY TECH
French state to pony up billions for cash-strapped EDF

Nuclear power may be the key to least-cost, zero-emission electricity systems

Macron calls for 14 new reactors in nuclear 'renaissance'

Missouri research reactor supplies critical medical isotopes during global disruption

ENERGY TECH
At bioenergy crossroads, should corn ethanol be left in the rearview mirror?

Scientists use "green" solvent and natural pigment to produce bioplastic

Accelerated ammonia synthesis holds promise for conversion of renewable energy

Breakthrough in converting CO2 into fuel using solar energy

ENERGY TECH
Spain, Denmark oppose EU green label for gas, nuclear

Iraqis queue for petrol in Mosul amid shortages

Easy aluminum nanoparticles for rapid, efficient hydrogen generation from water

India aims to be green hydrogen hub

ENERGY TECH
Morocco announces $1 billion drought relief plan

Hunger crisis threatens half of Somalia's young children: UN

Stakes 'never been higher' in climate fight: IPCC head

Climate-boosted drought in western US worst in 1,200 years









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.