Energy News  
ENERGY TECH
Researchers tackle a new opportunity to develop high-energy batteries
by Staff Writers
Adelphi MD (SPX) Apr 29, 2020

A depiction of the microsized silicon anode particle covered by solid electrolyte interphase, or SEI.

In recent years, lithium-ion batteries have become better at supplying energy to Soldiers in the field, but the current generation of batteries never reaches its highest energy potential. Army researchers are extremely focused on solving this challenge and providing the power Soldiers demand.

At the U.S. Army Combat Capabilities Development Command's Army Research Laboratory, in collaboration with the University of Maryland, scientists may have found a solution.

"We are very excited to demonstrate a new electrolyte design for lithium ion batteries that improves anode capacity by more than five times compared to traditional methods," said Army scientist Dr. Oleg Borodin. "This is the next step needed to move this technology closer to commercialization."

The team designed a self-healing, protective layer in the battery that significantly slows down the electrolyte and silicon anode degradation process, which could extend the lifespan of next generation lithium-ion batteries.

Their latest battery design increased the number of possible cycles from tens to over a hundred with little degradation. The journal Nature Energy published their findings.

Here's how a battery works. A battery stores chemical energy and converts it into electrical energy. Batteries have three parts, an anode (-), a cathode (+), and the electrolyte. An anode is an electrode through which the conventional current enters into a polarized electrical device. This contrasts with a cathode, through which current leaves an electrical device.

The electrolyte keeps the electrons from going straight from the anode to the cathode within the battery. In order to create better batteries, Borodin said, you can increase the capacity of the anode and the cathode, but the electrolyte has to be compatible between them.

Lithium-ion batteries generally use graphite anodes, which have a capacity of about 370 milliamp hours (mAh) per gram. But anodes made out of silicon can offer about 1,500 to 2,800 mAh per gram, or at least four times as much capacity.

The researchers said silicon particle anodes, as opposed to traditional graphite anodes, provide excellent alternatives, but they also degrade much faster. Unlike graphite, silicon expands and contracts during a battery's operation. As the silicon nanoparticles within the anode get larger, they often crack the protective layer - called the solid electrolyte interphase - that surrounds the anode.

The solid electrolyte interphase forms naturally when anode particles make direct contact with the electrolyte. The resulting barrier prevents further reactions from occurring and separates the anode from the electrolyte. But when this protective layer becomes damaged, the newly exposed anode particles will react continuously with electrolyte until it runs out.

"Others have tried to tackle this problem by designing a protective layer that expands when the silicon anode does," Borodin said. "However, these methods still cause some electrolyte degradation, which significantly shortens the lifetime of the anode and the battery."

The joint team at the University of Maryland and the Army Research Laboratory decided to try a new approach. Instead of an elastic barrier, the researchers designed a rigid barrier that doesn't break apart - even when the silicon nanoparticles expand. They developed a lithium-ion battery with an electrolyte that formed a rigid Lithium Fluoride solid electrolyte interphase, or SEI, when electrolyte interacts with the silicon anode particles and substantially reduced electrolyte degradation.

"We successfully avoided the SEI damage by forming a ceramic SEI that has a low affinity to the lithiated silicon particles, so that the lithiated silicon can relocate at the interface during volume change without damaging the SEI," said Prof. Chunsheng Wang, a professor of Chemical and Biomolecular Engineering at the University of Maryland. "The electrolyte design principle is universal for all alloy anodes and opens a new opportunity to develop high-energy batteries."

The battery design that Borodin and Wang's group conceived demonstrated a coulombic [the basic unit of electric charge] efficiency of 99.9 percent, which meant that only 0.1 percent of the energy was lost to electrolyte degradation each cycle.

This is a significant improvement over conventional designs for lithium-ion batteries with silicon anodes, which have a 99.5-percent efficiency. While seemingly small, Borodin said this difference translates to a cycle life more than five times longer.

"Experiments performed by Dr. Chunsheng Wang's group at the University of Maryland showed that this new method was successful," Borodin said. "However, it was successful not only for silicon but also for aluminum and bismuth anodes, which shows the universality of the principle."

The new design also came with several other benefits. The battery's higher capacity allowed the electrode to be markedly thinner, which made the charging time much faster and battery itself much lighter. In addition, the researchers found that the battery could handle colder temperatures better than normal batteries.

"For regular batteries, colder temperatures slow diffusion and may even freeze the liquids inside the batteries," Borodin said. "But because our design has a much higher capacity, thus ions have to diffuse shorter distances, resulting in a significantly improved low temperature operation, which is important for warfighters operating in cold climates."

The team thanked the ARL Enterprise for Multiscale Modeling of Materials program for its support during the research effort so far.

According to Borodin, the next step in the research is to develop a larger cell with a higher voltage using this design. In light of this goal, the team is currently looking into advancements into the cathode side of the lithium-ion battery.

Research paper


Related Links
US Army Research Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Microwaves power new technology for batteries, energy
West Lafayette IN (SPX) Apr 24, 2020
New battery technology involving microwaves may provide an avenue for renewable energy conversion and storage. Purdue University researchers created a technique to turn waste polyethylene terephthalate, one of the most recyclable polymers, into components of batteries. "We use an ultrafast microwave irradiation process to turn PET, or polyethylene terephthalate, flakes into disodium terephthalate, and use that as battery anode material," said Vilas Pol, a Purdue associate professor of chemic ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Europe's banks not doing enough on climate: pressure group

DLR rethinks carbon pricing process

Brussels tries to inoculate EU Green Deal against virus

Major new study charts course to net zero industrial emissions

ENERGY TECH
Superconductivity: It's hydrogen's fault

Microwaves power new technology for batteries, energy

Diamonds shine in energy storage solution

New scavenger technology allows robots to 'eat' metal for energy

ENERGY TECH
Supercomputing future wind power rise

Wind energy expansion would have $27 billion economic impact

Opportunity blows for offshore wind in China

Alphabet cuts cord on power-generating kite business

ENERGY TECH
Windows will soon generate electricity, following solar cell breakthrough

Scientists have devised method for gentle laser processing of perovskites at nanoscale

Physicists develop approach to increase performance of solar energy

NASA Earth data powers energy-saving decisions

ENERGY TECH
Framatome awarded to modernize research reactor at Technical University of Munich

Supercomputers and Archimedes' law enable calculating nanobubble diffusion in nuclear fuel

Framatome signs long-term support contract for Taishan EPR operations

Framatome to deliver reactor protection system to Kursk Nuclear Power Plant II in Russia

ENERGY TECH
Under pressure: New bioinspired material can 'shapeshift' to external forces

Valorizing wastewater can improve commercial viability of biomass oil production

Ethanol production plummets as people drive less during pandemic

Making biofuels cheaper by putting plants to work

ENERGY TECH
Crude lifted by Iran-US tension but virus impact hits stocks

Stock markets boosted by hopes virus worst has passed, oil dives

Study: Permian Basin has highest U.S. oil, gas methane emissions ever

Crisis-hit oil market in frantic hunt for storage

ENERGY TECH
US attacks China climate record on Earth Day

Fight climate change like coronavirus: UN

2019 was Europe's hottest year ever: EU

Pandemic cuts both ways for climate change









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.