Energy News
CHIP TECH
Researchers design new materials for advanced chip manufacturing
illustration only
Researchers design new materials for advanced chip manufacturing
by Kim Horner for UT Dallas News
Dallas TX (SPX) Dec 10, 2024

To make computer chips - and the devices they power - even smaller and more efficient, engineers need new materials.

Three University of Texas at Dallas faculty members and collaborators from other universities and two industry partners have teamed up to design and test indium-based materials to enable the manufacture of the next generation of computer chips.

The researchers have received a $1.9 million, three-year grant to support their work through the National Science Foundation Future of Semiconductors (FuSe2) program.

The UTD funding is part of $42.4 million in FuSe2 grants announced in September to support the goals of the federal CHIPS (Creating Helpful Incentives to Produce Semiconductors) and Science Act of 2022 to make microchips more energy efficient and to facilitate the domestic production of integrated circuits.

By introducing indium-based materials, the researchers aim to facilitate patterning in the extreme ultraviolet (EUV) range. Patterning, or lithography, is a key step in the semiconductor fabrication process in which patterns are created on the surface of a wafer to serve as pathways for transistors and other components. Moving from deep UV to EUV range makes it possible to produce smaller, more precise features on chips for better performance and energy efficiency.

During the traditional patterning process in semiconductor manufacturing, silicon wafers are coated with a removable layer of material called a photoresist before being exposed to UV photons. The next generation of lithography uses very high-energy photons - 92 electronvolts - in the EUV region. Due to the high energy of these photons, conventional photoresist materials will not work.

The researchers' new materials also could enable the production of 3D circuits, which are designed by stacking layers of chips like high-rises in a crowded city. New materials are needed to build added layers on a 3D chip without disturbing the existing circuits.

"If you are making a layer of devices on top of another layer of devices, you cannot heat it to a high temperature. Otherwise, you will destroy the existing layers," said Dr. Julia Hsu, professor of materials science and engineering, the Texas Instruments Distinguished Chair in Nanoelectronics in the Erik Jonsson School of Engineering and Computer Science, and principal investigator of the project.

Hsu said using indium-containing materials for the EUV photoresist and the transistors should lead to more efficiency by eliminating a step in integrated circuit manufacturing that involves solvents. Hsu is testing a technique called photonic curing to convert EUV patterned structures to nanoscale devices. Photonic curing uses pulses of light at high intensity but low energy to complete the chemical reactions that allow the indium oxide to achieve better semiconducting properties without overheating the underlying devices.

Hsu's preliminary work on indium-containing materials as an EUV photoresist has been supported by a Semiconductor Research Corporation (SRC) grant to investigate new semiconductor materials. She also plans to incorporate machine learning - a method she learned with support from a 2023 Simons Foundation Pivot Fellowship - into the project's design and testing methodologies.

"The FuSe2 project will enable us to take our preliminary results from the SRC project to a much higher level and bigger impact," Hsu said. "We will bring computation and synthetic chemistry to expand beyond currently commercially available materials."

Hsu's co-principal investigators include Dr. Cormac Toher, assistant professor of materials science and engineering and a computational materials scientist, and Dr. Kevin Brenner, assistant professor of materials science and engineering. Toher will design the indium-containing molecules, and Brenner will fabricate and test the devices.

The UTD researchers are working with co-principal investigators Dr. Howard Katz, professor of materials science and engineering at Johns Hopkins University, who will synthesize new molecules designed by Toher; and Dr. Chih-Hao Chang, associate professor of mechanical engineering at UT Austin, who will perform EUV testing on new photoresist materials; and collaborators at Tokyo Electron, Coppin State University and Northrop Grumman.

The project also includes semiconductor industry workforce training for community college students through UTD's North Texas Semiconductor Institute and a class that Hsu will teach as an immersive experience in the semiconductor industry.

Related Links
Erik Jonsson School of Engineering and Computer Science
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Dongguk University creates stretchable gel nanogenerators for wearable tech
Tokyo, Japan (SPX) Dec 10, 2024
Imagine a world where wearable devices seamlessly integrate into clothing, powering gadgets and offering secure user interactions. Researchers at Dongguk University have unveiled a gel polymer-based triboelectric nanogenerator (GPE-TENG) capable of converting body movement into electrical energy. This innovation not only powers devices like LEDs but also functions as a self-powered touch panel for biometric recognition, showcasing a significant leap in wearable technology. The newly developed GPE- ... read more

CHIP TECH
Iran extends school closures in Tehran amid fuel shortages

Russia says 'massive' strike on Ukraine a response to Kyiv's ATACMS use

Brazil trumpets emission cut plans at UN top court

Earning money while supporting power grid stability

CHIP TECH
Transforming fusion from a scientific curiosity into a powerful clean energy source

Fusion advances with innovative stellarator research

Improving fusion plasma predictions with multi-fidelity data science models

Battery-like memory withstands extreme heat for future applications

CHIP TECH
BP to 'significantly reduce' renewables investment

Baltic Sea wind farms impair Sweden's defence, says military

Sweden blocks 13 offshore wind farms over defence concerns

Sweden's defence concerned by planned offshore wind power

CHIP TECH
UCF researcher receives $3.8 million grant to develop a solar energy storage system

US finalizes tariff hikes on more China green tech imports

India mandates local-only solar energy components from 2026

So you want to build a solar or wind farm? Here's how to decide where

CHIP TECH
GE Vernova SMR reactor advances to Step 2 of UK regulatory approval process

Teletrix launches commercial AR platform for advanced radiation training

Framatome partners with Japan on sodium-cooled fast reactor development

Australia's opposition says nuclear plan cheaper than renewables

CHIP TECH
IATA chief says sustainable plane fuel supply not enough

From chip shop grease to efficient fuel alternative

A new catalyst can turn methane into something useful

Liquid Sun secures funding to scale sustainable aviation fuel production

CHIP TECH
UK's Starmer to push green energy ties on Norway trip

Fuel leak off Crimea coast after Russian tanker sinks

Canada unveils 2035 climate goal critics say is weak

NGOs accuse Uganda oil project of 'serious human rights violations'

CHIP TECH
Crunch time for Saudi-hosted drought, desertification talks

High temperatures are impacting younger populations most, study shows

IMF and Ecuador reach agreement to unlock $500 mn

'David v Goliath' battle at ICJ climate hearings; France urges clarity

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.