Researchers at the brink of fusion ignition at national ignition facility by Staff Writers Pittsburgh PA (SPX) Nov 15, 2021
After decades of inertial confinement fusion research, a record yield of more than 1.3 megajoules (MJ) from fusion reactions was achieved in the laboratory for the first time during an experiment at Lawrence Livermore National Laboratory's (LLNL) National Ignition Facility (NIF) on Aug. 8, 2021. These results mark an 8-fold improvement over experiments conducted in spring 2021 and a 25-fold increase over NIF's 2018 record yield (Figure 1). NIF precisely guides, amplifies, reflects, and focuses 192 powerful laser beams into a target about the size of a pencil eraser in a few billionths of a second. NIF generates temperatures in the target of more than 180 million F and pressures of more than 100 billion Earth atmospheres. Those extreme conditions cause hydrogen atoms in the target to fuse and release energy in a controlled thermonuclear reaction. LLNL physicist Debbie Callahan will discuss this achievement during a plenary session at the 63rd Annual Meeting of the APS Division of Plasma Physics. While there has been significant media coverage of this achievement, this talk will represent the first opportunity to address these results and the path forward in a scientific conference setting. Achieving these large yields has been a long-standing goal for inertial confinement fusion research and puts researchers at the threshold of fusion ignition, an important goal of NIF, the world's largest and most energetic laser. The fusion research community uses many technical definitions for ignition, but the National Academy of Science adopted the definition of "gain greater than unity" in a 1997 review of NIF, meaning fusion yield greater than laser energy delivered. This experiment produced fusion yield of roughly two-thirds of the laser energy that was delivered, tantalizingly close to that goal. The experiment built on several advances developed over the last several years by the NIF team including new diagnostics; target fabrication improvements in the capsule shell, fill tube and hohlraum (a gold cylinder that holds the target capsule); improved laser precision; and design changes to increase the energy coupled to the implosion and the compression of the implosion. These advances open access to a new experimental regime, with new avenues for research and the opportunity to benchmark modeling used to understand the proximity to ignition.
Integrating hot cores and cool edges in fusion reactors Pittsburgh PA (SPX) Nov 15, 2021 Future fusion reactors have a conundrum: maintain a plasma core that is hotter than the surface of the sun without melting the walls that contain the plasma. Fusion scientists refer to this challenge as "core-edge integration." Researchers working at the DIII-D National Fusion Facility at General Atomics have recently tackled this problem in two ways: the first aims to make the fusion core even hotter, while the second focuses on cooling the material that reaches the wall. Protecting the pla ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |