Energy News
ENERGY TECH
Researchers are cracking the code on solid-state batteries
illustration only
Researchers are cracking the code on solid-state batteries
by Eric Stann for MU News
Columbia MO (SPX) Feb 28, 2025

From electric vehicles to wireless earbuds, traditional lithium-ion batteries power our daily lives as they charge fast and store plenty of energy. However, they rely on a solution known as liquid electrolyte, which can catch on fire if damaged or overheated.

University of Missouri researchers may have a solution. Assistant Professor Matthias Young and team are figuring out how to use solid electrolytes instead of liquids or gels to make solid-state batteries, which are safer and more energy efficient.

When the solid electrolyte touches the cathode, it reacts and forms an interphase layer that's about 100 nanometers thick - 1,000 times smaller than the width of a single human hair, said Young, who has joint appointments in Mizzou's College of Engineering and College of Arts and Science. This layer blocks the lithium ions and electrons from moving easily, increasing resistance and hurting battery performance.

Understanding this issue with solid-state batteries - and how to overcome it - has vexed scientists for more than a decade.

Young's team tackled the problem by better understanding the root cause.

Using four-dimensional scanning transmission electron microscopy (4D STEM), the researchers examined the atomic structure of the battery without taking it apart - a revolutionary breakthrough for the field. This novel process allowed them to gain a fundamental understanding of the chemical reactions happening inside batteries, ultimately determining that the interphase layer was the culprit.

A potential solution

From electric vehicles to wireless earbuds, traditional lithium-ion batteries power our daily lives as they charge fast and store plenty of energy. However, they rely on a solution known as liquid electrolyte, which can catch on fire if damaged or overheated.

University of Missouri researchers may have a solution. Assistant Professor Matthias Young and team are figuring out how to use solid electrolytes instead of liquids or gels to make solid-state batteries, which are safer and more energy efficient.

When the solid electrolyte touches the cathode, it reacts and forms an interphase layer that's about 100 nanometers thick - 1,000 times smaller than the width of a single human hair, said Young, who has joint appointments in Mizzou's College of Engineering and College of Arts and Science. This layer blocks the lithium ions and electrons from moving easily, increasing resistance and hurting battery performance.

Understanding this issue with solid-state batteries - and how to overcome it - has vexed scientists for more than a decade.

Young's team tackled the problem by better understanding the root cause.

Using four-dimensional scanning transmission electron microscopy (4D STEM), the researchers examined the atomic structure of the battery without taking it apart - a revolutionary breakthrough for the field. This novel process allowed them to gain a fundamental understanding of the chemical reactions happening inside batteries, ultimately determining that the interphase layer was the culprit.

A potential solution

Young's lab specializes in thin-films formed by a vapor-phase deposition process known as oxidative molecular layer deposition (oMLD). Now, he plans to test whether his lab's thin-film materials can form protective coatings to prevent the solid electrolyte and cathode materials from reacting with each other.

The coatings need to be thin enough to prevent reactions but not so thick that they block lithium-ion flow, he said. We aim to maintain the high-performance characteristics of the solid electrolyte and cathode materials. Our goal is to use these materials together without sacrificing their performance for the sake of compatibility.

This carefully engineered approach at the nanoscale level will help ensure these materials work together seamlessly - making solid-state batteries one step closer to reality.

Understanding Cathode - Electrolyte Interphase Formation in Solid State Li-Ion Batteries via 4D-STEM was published in Advanced Energy Materials. Co-authors are Nikhila C. Paranamana, Andreas Werbrouck, Amit K. Datta and Xiaoqing He at Mizzou.

Young's lab specializes in thin-films formed by a vapor-phase deposition process known as oxidative molecular layer deposition (oMLD). Now, he plans to test whether his lab's thin-film materials can form protective coatings to prevent the solid electrolyte and cathode materials from reacting with each other.

The coatings need to be thin enough to prevent reactions but not so thick that they block lithium-ion flow, he said. We aim to maintain the high-performance characteristics of the solid electrolyte and cathode materials. Our goal is to use these materials together without sacrificing their performance for the sake of compatibility.

This carefully engineered approach at the nanoscale level will help ensure these materials work together seamlessly - making solid-state batteries one step closer to reality.

Research Report:Understanding Cathode - Electrolyte Interphase Formation in Solid State Li-Ion Batteries via 4D-STEM

Related Links
University of Missouri-Columbia
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
China's CALB announces European battery plant in Portugal
Lisbon (AFP) Feb 24, 2025
Chinese lithium battery manufacturer CALB announced plans Monday to build its first European plant in Portugal, a two-billion-euro ($2.1-billion) investment it hopes will help it crack the continent's electric car market. CALB said it would break ground this year on the factory in Sines, around 100 kilometres (60 miles) south of Lisbon, which it expects to start supplying the European market by 2027 and be fully operational in 2028. "We chose Portugal to establish our European gigafactory becaus ... read more

ENERGY TECH
EU vows to slash red tape but stick to climate goals

Japan sets new 2035 emissions cut goal

COP30 president urges most 'ambitious' emissions targets possible

Climate activists defend 'future generations', appeal lawyer says

ENERGY TECH
SLAC to advance fusion target technology through DOE FIRE Collaboratives

Researchers are cracking the code on solid-state batteries

Will neutrons compromise the operation of superconducting magnets in a fusion plant?

Unlocking the secrets of fusion's core with AI-enhanced simulations

ENERGY TECH
Green energy projects adding to Sami people's climate woes: Amnesty

New Study Enhances Trust in Wind Power Forecasting with Explainable AI

Trump casts chill over US wind energy sector

US falling behind on wind power, think tank warns

ENERGY TECH
Machine Learning Enhances Solar Power Forecast Accuracy

The next-generation solar cell is fully recyclable

Cuba opens solar park hoping to stave off blackouts

China to further shrink renewables subsidies in market reform push

ENERGY TECH
GE Vernova advances UK SMR development with new supplier agreements

Bangladesh calls for continued Russian nuclear collaboration

French nuclear giant Orano triples profits

Kazakhstan inks first deal to supply uranium to Switzerland

ENERGY TECH
Why Expanding the Search for Climate-Friendly Microalgae is Essential

Solar-powered reactor extracts CO2 from air to produce sustainable fuel

Zero Emissions Process for Truly Biodegradable Plastics Developed

New Green Phosphonate Chemistry Explored

ENERGY TECH
Chinese scientists utilize SDGSAT-1 satellite for offshore oil and gas platform monitoring

BP ditches climate targets in pivot back to oil and gas

Iraq, BP finalise deal to develop new oil fields

Greenpeace trial begins in North Dakota in key free speech case

ENERGY TECH
Little Scope for Large-Scale Climate Plantations Without Breaching Planetary Boundaries

BP to up oil and gas output, slash clean energy spend in overhaul

Stuck in eternal drought, UAE turns to AI to make it rain

US shuns climate science meeting as UN warns 'time is not on our side'

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.