Researchers achieve burning plasma regime for first time in lab by Michael Padilla for LLNL News Livermore CA (SPX) Jan 27, 2022
After decades of fusion research, a burning plasma state was achieved on November 2020 and February 2021 at Lawrence Livermore National Laboratory's National Ignition Facility (NIF), the world's most energetic laser. Obtaining a burning plasma is a critical step toward self-sustaining fusion energy. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn to enable high-energy gain. The work is detailed in the Jan. 26 issue of Nature titled "Burning plasma achieved in inertial fusion," with LLNL physicists Alex Zylstra and Omar Hurricane serving as lead authors. "In this paper, we show that those experiments entered into what we call the burning plasma regime for the first time in the laboratory," Zylstra said. "A burning plasma is one in which the fusion reactions provide most of the plasma heating." LLNL uses NIF to generate X-rays in a radiation cavity to indirectly drive a fuel-containing capsule via the X-ray ablation pressure. The implosion process compresses and heats the deuterium-tritium fuel via mechanical work. "Fusion experiments over decades have produced fusion reactions using large amounts of 'external' heating to get the plasma hot. Now, for the first time, we have a system where the fusion itself is providing most of the heating," Zylstra said. "This is a key milestone on the way to even higher levels of fusion performance." Getting fusion to work requires getting the power balance in the fuel right - there are always mechanisms that cause the plasma to lose energy, while fusion and the implosion's compression heat the plasma. Fusion is a highly non-linear process and, in this regime, researchers now have the opportunity to rapidly increase performance - in fact, this burning plasma work was a key stepping stone to the 1.3 MJ yield produced in August 2021. Generating these burning plasmas on NIF enables novel stewardship science experiments on both the burn physics and stockpile applications using the higher yield. Designing and conducting these experiments was the work of a huge multidisciplinary team, with more than 150 coauthors on this publication from the Lab and partner institutions. Confirming that researchers had actually entered the burning plasma regime required using some inferred metrics, where a combination of measured quantities was used from several key diagnostics on NIF and models to infer the energy balance in the fusion fuel. This work was largely done in a working group that looks at analysis of the 'hot spot,' with conclusions validated by another working group of scientists at the Lab. Reflecting the team effort, additional papers are coming soon on these burning plasma experiments. A paper describing the computational design work that led to these results is accepted for publication, with lead authors Annie Kritcher and Chris Young. Further analysis of the experiments in the new burning plasma regime is submitted for publication in a paper led by authors Steven Ross, Joe Ralph and Alex Zylstra.
Common household cleaner can boost effort to harvest fusion energy on Earth Plainsboro NJ (SPX) Jan 13, 2022 Scientists have found that adding a common household cleaning agent - the mineral boron contained in such cleaners as Borax - can vastly improve the ability of some fusion energy devices to contain the heat required to produce fusion reactions on Earth the way the sun and stars do. Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) working with Japanese researchers, made the observation on the Large Helical Device (LHD) in Japan, a twisty magnetic facili ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |