Energy News  
Researchers Produce Firsts With Bursts Of Light

Lead author Yuzhen Shen (left) and NSLS researcher Larry Carr.
by Staff Writers
Upton NY (SPX) Jul 27, 2007
Researchers at the U.S. Department of Energy's Brookhaven National Laboratory have generated extremely short pulses of light that are the strongest of their type ever produced and could prove invaluable in probing the ultra-fast motion of atoms and electrons. The scientists also made the first observations of a phenomenon called cross-phase modulation with this high-intensity light - a characteristic that could be used in numerous new light source technologies.

The work, which was done at Brookhaven's Source Development Laboratory, an offshoot of the Lab's National Synchrotron Light Source (NSLS), is described online in the July 23, 2007, edition of Physical Review Letters.

The light pulses used were in the terahertz (THz) range of the broad electromagnetic spectrum, found between the microwave and infrared range. Scientists send tight bunches of electrons at nearly the speed of light through a magnetic field to produce THz radiation at a trillion cycles per second - the terahertz frequency that gives the light its name and that makes them especially valuable for investigating biological molecules and imaging, ranging from tumor detection to homeland security.

The Brookhaven team is looking to expand the potential uses for this type of light by increasing the strength of individual THz pulses, a longtime goal for scientists in the field. By slamming an electron beam from an accelerator into an aluminum mirror, the researchers produced 100 microjoule (100 megawatt) single-cycle pulses - the highest energy ever achieved to date with THz radiation. For comparison, 100 megawatts is about the output of a utility company's electrical generator.

The combination of this newfound strength with ultra-fast pulses provides researchers with a powerful new tool to study the movement of a material's electrons (which zip around at the femtosecond, or quadrillionth of a second, timescale) or atoms (which move at the picosecond, or trillionth of a second, timescale).

"The goal is really to understand the properties of materials," said NSLS researcher Yuzhen Shen, the lead author of the paper. "One might ask what happens in a solid when light, electricity, or sound goes through it, and it's all related to atoms in a crystal wiggling around or the movement of electrons. So the effort surrounding ultra-fast pulses is going into making tools to probe the real fundamental properties of materials on the scales at which they move."

Using this strong light, researchers can "kick" molecular processes such as catalysis or electronic switching (important for developing data storage media) into action and watch their mechanisms on a very short timescale.

The team also found something surprising: the intensity of their THz pulses is so great that they introduce so-called "nonlinear optical effects," specifically, a phenomenon known as cross-phase modulation.

"When you pull on a spring, if you pull twice as hard, it stretches twice as much," said NSLS researcher Larry Carr. "But there's a limit where if you pull twice as hard, the spring doesn't move anymore. That's when it's called nonlinear. The same thing happens in materials. You let these short pulses pass through a material, and they stress it and pull some of the charges apart so they don't act in a linear manner."

As a result, the researchers can manipulate both the ultra-fast THz pulses and the material they interact with. Some of the simplest examples include changing the color of the light or turning the material into a focusing lens.

This is the first time cross-phase modulation has been observed in single-cycle THz pulses. Learning how to control this characteristic could lead to even more light source technologies.

This research was supported by the Office of Basic Energy Sciences within the U.S. Department of Energy's Office of Science, the Office of Naval Research, and Brookhaven's Laboratory Directed R and D funds.

Community
Email This Article
Comment On This Article

Related Links
Brookhaven National Laboratory
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Thousands Of Atoms Swap Spins With Partners In Quantum Square Dance
Washington DC (SPX) Jul 27, 2007
Physicists at the Commerce Department's National Institute of Standards and Technology (NIST) have induced thousands of atoms trapped by laser beams to swap "spins" with partners simultaneously. The repeated exchanges, like a quantum version of swinging your partner in a square dance but lasting a total of just 10 milliseconds, might someday carry out logic operations in quantum computers, which theoretically could quickly solve certain problems that today's best supercomputers could not solve in years.







  • Italy, Greece, Turkey Sign Gas Pipeline Deal
  • Arctic Crisis -- Part 2
  • EU Backs Cutting Duties On Chinese Light-Bulbs
  • MIT Researchers Work Toward Spark-Free, Fuel-Efficient Engines

  • France-Libya Nuclear Deal A Dangerous Step Warn Many
  • Australia Considers Selling Uranium To India
  • US Lawmakers Threatens To Block Indian Nuclear Deal
  • French Firm Could Build Shield Over Main Chernobyl Reactor

  • Invisible Gases Form Most Organic Haze In Both Urban And Rural Areas
  • BAE Systems Completes Major New Facility For Ionospheric Physics Research
  • NASA Satellite Captures First View Of Night-Shining Clouds
  • Main Component For World Latest Satellite To Measure Greenhouse Gases Delivered

  • East Africa Battles Deforestation With Butterfly Nets
  • Peru Launches Drive To Regrow Lost Forests And Jungles
  • Increase In Creeping Vines Signals Major Shift In Southern US Forests
  • Report Finds Forest Enterprises Stifled By Red Tape, Putting Forests And Incomes At Risk

  • Researcher Studies Proteins That Make Rice Flourish
  • Asian Land Grabs Highlight Class Friction And Bureaucratic Failures
  • Natural Disasters Hit Chinese Grain Output
  • NASA Researchers Find Satellite Data Can Warn Of Famine

  • Smart Traffic Sign Stops Collisions
  • Toyota Plug-In Hybrid To Hit The Roads
  • Networkcar Selects Siemens Modules For Networkfleet Wireless Vehicle Management System
  • Report Finds Many Benefits From Plug-In Hybrid Electric Vehicles

  • Boeing Flies Blended Wing Body Research Aircraft
  • Steering Aircraft Clear Of Choppy Air
  • EAA AirVenture 2007
  • Sensors May Monitor Aircraft For Defects Continuously

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement