Research Reveals Hidden Magnetism In Superconductivity
Washington DC (SPX) Feb 06, 2006 While studying a compound made of the elements cerium- rhodium-indium, researchers at Los Alamos National Laboratory and the University of Illinois at Urbana-Champaign have discovered that a magnetic state can coexist with superconductivity in a specific temperature and pressure range. The discovery is a step toward a deeper understanding of how Nature is organized in regimes ranging from the fabric of the cosmos to the most fundamental components of elementary particles. In research published recently in the scientific journal Nature, Los Alamos scientists Tuson Park, Joe D. Thompson, and their colleagues describe the discovery of hidden magnetism in the CeRhIn5 compound. In studying the compound, researchers found that a purely unconventional superconducting phase is separated from a phase of coexisting magnetism and unconventional superconductivity, with the boundary between these two phases controlled by the laws of quantum physics. Unconventional superconductors are materials that exhibit superconductivity, a complete absence of electrical resistance under cold temperatures, but use exotic mechanisms. Conventional wisdom has long held that the magnetism is excluded as materials change phases, but the researchers now show that it is merely hidden by unconventional superconductivity and can be made to reappear in the presence of an applied magnetic field. According to Thompson, "this discovery provides an exciting opportunity to better understand how magnetism and unconventional superconductivity are related in more-complex materials and may reveal more about the technologically important field of high temperature superconductors." At low temperatures, electrons in a metal can pair with each other to create superconductivity, align in a magnetically ordered state, or do neither. Until recently, these mutually exclusive options for electrons were the norm, but the discovery of complex electronic materials like CeRhIn5, which can sustain more exotic forms of superconductivity, now shows that electrons can participate simultaneously in magnetism and superconductivity. In addition to Park and Thompson, the research team included Filip Ronning, Roman Movshovich, and John Sarrao from Los Alamos, along with Huiqiu Yuan and Myron Salamon, from the University of Illinois at Urbana-Champaign. Community Email This Article Comment On This Article Related Links Los Alamos National Laboratory Powering The World in the 21st Century at Energy-Daily.com
Researchers Find Ways Heat Loving Microbes Release Energy Seattle WA (SPX) Mar 07, 2006 Curiosity about the microbial world drove Jan Amend, Ph.D., associate professor of earth and planetary sciences in Arts & Sciences at Washington University to Vulcano Island, Italy, a shallow hydrothermal Shangri-la near Sicily. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |