Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Refocusing research into high-temperature superconductors
by Staff Writers
Munich, Germany (SPX) Aug 05, 2014


At the PUMA three-axis spectrometer of Technische Universitaet Muenchen's Research Neutron Source Heinz Maier-Leibnitz in Garching (Germany) Dr. Jitae Park proved that the formation of nematic phases does not stem from doping effects, but rather is a result of sudden changes in the preferential direction of the movement of electron spins. Image courtesy Volker Lannert and DAAD.

Below a specific transition temperature superconductors transmit electrical current nearly loss-free. For the best of the so-called high-temperature superconductors, this temperature lies around -180 C - a temperature that can be achieved by cooling with liquid nitrogen.

The location of atomic nuclei and binding electrons in a material is determined by its crystal structure. However, electrons additionally have an electromagnetic angular momentum, referred to as spin. When many spins become coupled in a material, electromagnetic disturbances with a preferential orientation can form, creating so-called nematic phases. Many researchers see a key to understanding the phenomenon of high-temperature superconducting in these nematic phases.

Spin-dynamics or doping effect?
A group of scientists discovered microscopic impurities during investigations under a scanning tunneling microscope. They thus suspected that these impurities were responsible for the formation of the nematic phases - analog to silicon, where doping with minute impurities induces electric conductivity.

Dr. Jitae Park, a scientist at the Technische Universitaet Muenchen (TUM), and his colleagues at the Beijing National Laboratory for Condensed Matter Physics and the Department of Physics and Astronomy of Rice University in Houston/Texas, have now shown that this is not the case, but rather that a completely different effect is at work.

Using the PUMA three-axis spectrometer at the Heinz Maier-Leibniz Center in Garching (Germany), they investigated samples of a ferrous high-temperature superconductor doped with small amounts of nickel at various temperatures. The scientists proved that the formation of nematic phases has no direct relationship to doping with nickel.

Collective movements of electron spins, in contrast, have a strong effect on the formation of nematic phases. These form at temperatures that are significantly higher than the transition temperatures. The moment, the superconducting effect reaches its maximum, the nematic phase disappears completely.

"With our experiment, we have shown that the formation of nematic phases does not stem from doping effects, but rather is a result of sudden changes in the preferential direction of the movement of electron spins", explains Jitae Park, who carried out the experiment at the FRM II Research Neutron Source of TU Muenchen.

"Researchers will now be able to focus their future research on the relationship between spin dynamics in nematic phases and high-temperature superconductivity."

Efficient experimental design
Neutron scattering experiments on magnetism are extremely elaborate because they normally require numerous experiments at various neutron sources around the globe to obtain a complete set of data. In this case, the measurement data were collected in a series of cleverly designed experiments at the PUMA instrument in the record time of only four weeks.

The experiment also represented a particular challenge because the researchers could only use very small crystals. The scientists chose an iron pnictide, a compound made of iron, barium and arsenic, which they doped with small amounts of nickel. However, under normal conditions this material forms twin crystals, which do not allow measuring of nematic phases.

"The formation of twin crystals can be suppressed by applying pressure," says Jitae Park, "but as a result we could use only very small crystals." Thus the researchers opted to carry out the experiment at the FRM II Research Neutron Source in Garching because of its very high neutron flux.

.


Related Links
Technische Universitaet Muenchen
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Physicists unlock nature of high-temperature superconductivity
Chicago IL (SPX) Jul 29, 2014
Physicists have identified the "quantum glue" that underlies a promising type of superconductivity - a crucial step towards the creation of energy superhighways that conduct electricity without current loss. The research, published online in the Proceedings of the National Academy of Sciences, is a collaboration between theoretical physicists led by Dirk Morr, professor of physics at the ... read more


ENERGY TECH
U.K. says it's positioned to lead carbon capture development

Research proves there is power in numbers to reduce electricity bills

Italy agrees to sell energy grid stake to China

Canada lobs economic shot across Russian energy bow

ENERGY TECH
'Wetting' a battery's appetite for renewable energy storage

Refocusing research into high-temperature superconductors

Researchers uncover novel process for creation of fuel and chemical compounds

LEDs made from 'wonder material' perovskite

ENERGY TECH
Victoria tweaks Wind Farm Planning Rules

Low-carbon pool growing in British economy

Portuguese consortium to spend $300 million on wind

Fires are a major cause of wind farm failure

ENERGY TECH
DuPont Adds Two New Solamet PV Metallization Pastes

US and China Continue to Dominate in Commercial PV Installations

How living things capture energy from the sun

New Material Allows for Ultra-Thin Solar Cells

ENERGY TECH
Fukushima operator unveils newest tainted-water plan

Toshiba orders DCIS technology for Fukushima plant cleanup

Ex-TEPCO execs should be charged over Fukushima: panel

Areva shares fall on first-half loss, lowered outlook

ENERGY TECH
Spinach could lead to alternative energy more powerful than Popeye

Biofuels benefit energy security, Secretary Moniz says

German laws make biogas a bad bet, RWE Innogy says

U.S. looking for ways to make biofuels cheaper

ENERGY TECH
China's Circumlunar Spacecraft Unmasked

China to launch HD observation satellite this year

Lunar rock collisions behind Yutu damage

China's Fast Track To Circumlunar Mission

ENERGY TECH
Amid drought, California declares war on lush lawns

Peru's carbon quantified: Economic and conservation boon

Big data confirms climate extremes are here to stay

Beijing to weigh administrative duties against climate




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.