Powering the future with revolutionary lithium extraction technique by Staff Writers Melbourne, Australia (SPX) Mar 10, 2020
An international research team has pioneered and patented a new filtration technique that could one day slash lithium extraction times and change the way the future is powered. The world-first study, published in the prestigious international journal Nature Materials, presents findings that demonstrate the way in which Metal-Organic Framework (MOF) channels can mimic the filtering function, or 'ion selectivity', of biological ion channels embedded within a cell membrane. Inspired by the precise filtering capabilities of a living cell, the research team has developed a synthetic MOF-based ion channel membrane that is precisely tuned, in both size and chemistry, to filter lithium ions in an ultra-fast, one-directional and highly selective manner. This discovery, developed by researchers at Monash University, CSIRO, the University of Melbourne and the University of Texas at Austin, opens up the possibility to create a revolutionary filtering technology that could substantially change the way in which lithium-from-brine extraction is undertaken. This technology received a worldwide patent in 2019. Energy Exploration Technologies, Inc. (EnergyX) has since executed a worldwide exclusive licence to commercialise the technology. "Based on this new research, we could one day have the capability to produce simple filters that will take hours to extract lithium from brine, rather than several months to years," said Professor Huanting Wang, co-lead research author and Professor of Chemical Engineering at Monash University. "Preliminary studies have shown that this technology has a lithium recovery rate of approximately 90 percent - a substantial improvement on 30 percent recovery rate achieved through the current solar evaporation process." Professor Benny Freeman from the McKetta Department of Chemical Engineering at The University of Texas at Austin, said: "Thanks to the international, interdisciplinary and collaborative team involved in this research, we are discovering new routes to very selective separation membranes. "We are both enthusiastic and hopeful that the strategy outlined in this paper will provide a clear roadmap for resource recovery and low energy water purification of many different molecular species." Associate Professor (Jefferson) Zhe Liu from The University of Melbourne said: "The working mechanism of the new MOF-based filtration membrane is particularly interesting, and is a delicate competition between ion partial dehydration and ion affinitive interaction with the functional groups distributed along the MOF nanochannels. "There is significant potential of designing our MOF-based membrane systems for different types of filtration applications, including for use in lithium-from-brine extraction." CSIRO and Monash University Associate Professor Matthew Hill said: "We're pleased that our international research collaboration has made a breakthrough that could improve the supply of lithium. This is important for enabling electric vehicles and grid integration of renewable energy sources." "It's truly an honour to work with such brilliant scientists at all these organisations," said Teague Egan, Founder and CEO of EnergyX. "This breakthrough invention will literally change the way lithium is produced and how we power our future." Lithium-from-brine extraction is most common in the Lithium Triangle - a region of the Andes bordering Argentina, Bolivia and Chile, which holds roughly half of the world's lithium reserves - and some sites across the USA. With the majority of Australia's lithium produced from the mineral spodumene, the new technique could spur on the investigation of Australia's salt lakes for potential lithium production options.
Potassium metal battery emerges as a rival to lithium-ion technology Troy NY (SPX) Mar 04, 2020 From cell phones, to solar power, to electric cars, humanity is increasingly dependent on batteries. As demand for safe, efficient, and powerful energy storage continues to rise, so too does the call for promising alternatives to rechargeable lithium-ion batteries, which have been the dominant technology in this space. In research published in Proceedings of the National Academy of Sciences, researchers from Rensselaer Polytechnic Institute demonstrate how they can overcome a persistent challenge ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |