Physicists create tunable superconductivity in twisted graphene "nanosandwich" by Jennifer Chu for MIT News Boston MA (SPX) Feb 02, 2021
When two sheets of graphene are stacked atop each other at just the right angle, the layered structure morphs into an unconventional superconductor, allowing electric currents to pass through without resistance or wasted energy. This "magic-angle" transformation in bilayer graphene was observed for the first time in 2018 in the group of Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT. Since then, scientists have searched for other materials that can be similarly twisted into superconductivity, in the emerging field of "twistronics." For the most part, no other twisted material has exhibited superconductivity other than the original twisted bilayer graphene, until now. In a paper appearing in Nature, Jarillo-Herrero and his group report observing superconductivity in a sandwich of three graphene sheets, the middle layer of which is twisted at a new angle with respect to the outer layers. This new trilayer configuration exhibits superconductivity that is more robust than its bilayer counterpart. The researchers can also tune the structure's superconductivity by applying and varying the strength of an external electric field. By tuning the trilayer structure, the researchers were able to produce ultra-strongly coupled superconductivity, an exotic type of electrical behavior that has rarely been seen in any other material. "It wasn't clear if magic-angle bilayer graphene was an exceptional thing, but now we know it's not alone; it has a cousin in the trilayer case," Jarillo-Herrero says. "The discovery of this hypertunable superconductor extends the twistronics field into entirely new directions, with potential applications in quantum information and sensing technologies." His co-authors are lead author Jeong Min Park and Yuan Cao at MIT, and Kenji Watanabe and Takashi Taniguchi of the National Institute of Materials Science in Japan.
A new super family A sheet of graphene is an atom-thin layer of graphite, made entirely of carbon atoms arranged in a honeycomb lattice, like the thinnest, sturdiest chicken wire. The theorists proposed that if three sheets of graphene were stacked like a sandwich, with the middle layer rotated by 1.56 degrees with respect to the outer layers, the twisted configuration would create a kind of symmetry that would encourage electrons in the material to pair up and flow without resistance - the hallmark of superconductivity. "We thought, why not, let's give it a try and test this idea," Jarillo-Herrero says. Park and Cao engineered trilayer graphene structures by carefully slicing a single gossamer sheet of graphene into three sections and stacking each section on top of each other at the precise angles predicted by the theorists. They made several trilayer structures, each measuring a few micrometers across (about 1/100 the diameter of a human hair), and three atoms tall. "Our structure is a nanosandwich," Jarillo-Herrero says. The team then attached electrodes to either end of the structures, and ran an electric current through while measuring the amount of energy lost or dissipated in the material. "We saw no energy dissipated, meaning it was a superconductor," Jarillo-Herrero says. "We have to give credit to the theorists - they got the angle right." He adds that the exact cause of the structure's superconductivity - whether due to its symmetry, as the theorists proposed, or not - remains to be seen, and is something that the researchers plan to test in future experiments. "For the moment we have a correlation, not a causation," he says. "Now at least we have a path to possibly explore a large family of new superconductors based on this symmetry idea."
"The biggest bang" The team used the same method to tune trilayer graphene. They also discovered a second way to control the material's superconductivity that has not been possible in bilayer graphene and other twisted structures. By using an additional electrode, the researchers could apply an electric field to change the distribution of electrons between the structure's three layers, without changing the structure's overall electron density. "These two independent knobs now give us a lot of information about the conditions where superconductivity appears, which can provide insight into the key physics critical to the formation of such an unusual superconducting state," Park says. Using both methods to tune the trilayer structure, the team observed superconductivity under a range of conditions, including at a relatively high critical temperature of 3 kelvins, even when the material had a low density of electrons. In comparison, aluminum, which is being explored as a superconductor for quantum computing, has a much higher density of electrons and only becomes superconductive at about 1 kelvin. "We found magic-angle trilayer graphene can be the strongest coupled superconductor, meaning it superconducts at a relatively high temperature, given how few electrons it can have," Jarillo-Herrero says. "It gives the biggest bang for your buck." "The work is a meaningful step up in structural complexity of a twistronic system that can be faithfully reproduced in several samples," says David Goldhaber-Gordon, a professor of physics at Stanford University who was not involved in the study. "That structural complexity is not just pursued for its own sake but rather aims to make the effect of electronic interactions tunable. Applications of such sophisticated multilayer structures will likely be in quantum information science where the exquisite control of electronic structure will be important. " The researchers plan to fabricate twisted graphene structures with more than three layers to see whether such configurations, with higher electron densities, can exhibit superconductivity at higher temperatures, even approaching room temperature. "Our main goal is to figure out the fundamental nature of what underlies strongly coupled superconductivity," Park says. "Trilayer graphene is not only the strongest-coupled superconductor ever found, but also the most tunable. With that tunability we can really explore superconductivity, everywhere in the phase space."
Research Report: "Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene"
Nano-thin piezoelectrics advance self-powered electronics Melbourne, Australia (SPX) Jan 20, 2021 A new type of ultra-efficient, nano-thin material could advance self-powered electronics, wearable technologies and even deliver pacemakers powered by heart beats. The flexible and printable piezoelectric material, which can convert mechanical pressure into electrical energy, has been developed by an Australian research team led by RMIT University. It is 100,000 times thinner than a human hair and 800% more efficient than other piezoelectrics based on similar non-toxic materials. Impor ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |