Energy News  
Paleontologists Discover New Mammal From Mesozoic Era

Animals shows intermediate ear structure in evolution of modern mammals. Yanoconodon is about 5 inches (or 15 cm) long and estimated to weigh about 30 grams. Its teeth are notable for the three cusps in a straight line on molars (thus known as a triconodont) for feeding on insects and worms. It has a long body, short and sprawling limbs and claws that were ideal for either digging or living on the ground.
by Staff Writers
Washington DC (SPX) Mar 15, 2007
An international team of American and Chinese paleontologists has discovered a new species of mammal that lived 125 million years ago during the Mesozoic Era, in what is now the Hebei Province in China.

The new mammal, documented in the March 15 issue of the journal Nature, provides first-hand evidence of early evolution of the mammalian middle ear--one of the most important features for all modern mammals. The discovery was funded by the National Science Foundation (NSF).

"This early mammalian ear from China is a rosetta-stone type of discovery which reinforces the idea that development of complex body parts can be explained by evolution, using exquisitely preserved fossils," said H. Richard Lane, program director in NSF's Division of Earth Sciences, which co-funded the discovery with NSF's Division of Environmental Biology and its Assembling the Tree of Life (AToL) program.

Named Yanoconodon allini after the Yan Mountains in Hebei, the fossil was unearthed in the fossil-rich beds of the Yixian Formation and is the first Mesozoic mammal recovered from Hebei. The fossil site is about 300 kilometers outside of Beijing.

The researchers discovered that the skull of Yanoconodon revealed a middle ear structure that is an intermediate step between those of modern mammals and those of near relatives of mammals, also known as mammaliaforms.

"This new fossil offers a rare insight in the evolutionary origin of the mammalian ear structure," said Zhe-Xi Luo, a paleontologist at the Carnegie Museum of Natural History (CMNH) in Pittsburgh, Pa. "Evolution of the ear is important for understanding the origins of key mammalian adaptations."

Mammals have highly sensitive hearing, far better than the hearing capacity of all other vertebrates, scientists have found. Consequently, paleontologists and evolutionary biologists have been searching for more than a century for clues to the evolutionary origins of mammal ear structure.

Mammalian hearing adaptation is made possible by a sophisticated middle ear of three tiny bones, known as the hammer (malleus), the anvil (incus) and the stirrup (stapes), plus a bony ring for the eardrum (tympanic membrane).

The mammal middle ear bones evolved from the bones of the jaw hinge in their reptilian relatives. However, paleontologists long have attempted to understand the evolutionary pathway via which these precursor jaw bones became separated from the jaw and moved into the middle ear of modern mammals.

"Now we have a definitive piece of evidence, in a beautifully preserved fossil split on two rock slabs," said Luo. "Yanoconodon clearly shows an intermediate condition in the evolutionary process of how modern mammals acquired their middle ear structure."

Yanoconodon is about 5 inches (or 15 cm) long and estimated to weigh about 30 grams. Its teeth are notable for the three cusps in a straight line on molars (thus known as a triconodont) for feeding on insects and worms. It has a long body, short and sprawling limbs and claws that were ideal for either digging or living on the ground.

In addition to its unique ear structure, Yanoconodon also has a surprisingly high number of 26 thoracic ("chest") and lumbar ("waist") vertebrae, unlike most living and extinct terrestrial mammals that commonly have 19 or 20 thoracic and lumbar vertebrae. The extra vertebrae give Yanoconodon a more elongated body form, in contrast to its relatively shorter and very primitive limb and foot structures. The new mammal also has lumbar ribs, a rare feature among modern mammals.

"The discoveries of exquisitely preserved Mesozoic mammals from China have built the evidence such that biologists and paleontologists are able to make sense of how developmental mechanisms have impacted the morphological evolution of the earliest mammals," said Luo.

The article is authored by Luo and his collaborators, Peiji Chen and Gang Li of Nanjing Institute of Geology and Palaeontology, China, and graduate student Meng Chen of Nanjing University.

Community
Email This Article
Comment On This Article

Related Links
National Science Foundation
Explore The Early Earth at TerraDaily.com
Explore The Early Earth at TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Study Concludes Caribbean Extinctions Occurred 2M Years After Apparent Cause
Sab Diego CA (SPX) Mar 14, 2007
Smithsonian scientists and colleagues report a new study that may shake up the way paleontologists think about how environmental change shapes life on Earth. The researchers summarized the environmental, ecological and evolutionary consequences for Caribbean shallow-water marine communities when the Isthmus of Panama was formed. They concluded that extinctions resulting when one ocean became two were delayed by 2 million years.







  • New Lithium-Ion Battery Technology Created
  • Unlocking The Secrets Of High-Temperature Superconductors
  • China Bans New Small Coal-Based Power Generators
  • Progress Made in Biomass-to-Biofuels Conversion Process

  • US For Cooperation With Russia On Uranium Enrichment Centers
  • Chirac's Last EU Summit Goes Nuclear
  • Czech Nuclear Watchdog Head Says Temelin Leaks Unacceptable
  • Bushehr Nuclear Project Faces Uncertain Future

  • Disaster Zone Declared As Thai Haze Reaches Dangerous Levels
  • Thailand Considers Declaring Emergency Over Haze
  • Spacecraft To Study Clouds At Edge Of Space Arrives At Vandenberg
  • Metop Measures Ozone And Nitrogen Dioxide Concentrations With High Precision

  • Some Forests Recovering But Net Losses Persist
  • Indonesia To Rehabilitate Failed Peatland Project From Suharto Era
  • Forest Replacing Tundra At Rapid Rate
  • Malaysians In Buying Bid To Save Forests

  • Plant Size Morphs Dramatically as Scientists Tinker with Outer Layer
  • Indefinite Donor Accord To Preserve World Rice Varieties
  • Up To One Million Fish Found Dead In Thai River
  • Weeding Out The Risk Of Pest Plants

  • Toyota Anticipates Sharp Increase In Its Hybrid Sales
  • New Nanoscale Engineering Breakthrough Points To Hydrogen-Powered Vehicles
  • Geneva Show Hints At Green Fuel Jumble For Motorists
  • Students Enter Competition To Produce A Zero-Emissions Snowmobile

  • Germans Urged To Give Foreign Travel A Rest To Curb Global Warming
  • Raytheon Team Proposes Single International Standard In ADS-B Pursuit
  • NASA Signs Defense Department Agreement
  • Lockheed Martin And FAA Reach Significant Milestone In Transformation Of Flight Services

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement