Energy News  
ENERGY TECH
PPPL scientists help test innovative device to improve efficiency of tokamaks
by Staff Writers
Princeton NJ (SPX) Apr 13, 2016


This is a photo of white-hot limiter glowing in contact with the plasma during an EAST discharge. Image courtesy J.S. Hu. For a larger version of this image please go here.

Scientists at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have helped design and test a component that could improve the performance of doughnut-shaped fusion facilities known as tokamaks. Called a "liquid lithium limiter," the device has circulated the protective liquid metal within the walls of China's Experimental Advanced Superconducting Tokamak (EAST) and kept the plasma from cooling down and halting fusion reactions.

The journal Nuclear Fusion published results of the experiment in March 2016. The research was supported by the DOE Office of Science.

"We demonstrated a continuous, recirculating lithium flow for several hours in a tokamak," said Rajesh Maingi, head of boundary physics research and plasma-facing components at PPPL. "We also demonstrated that the flowing liquid lithium surface was compatible with high plasma confinement and with reduced recycling of the hydrogen isotope deuterium to an extent previously achieved only with evaporated lithium coatings. The recirculating lithium provides a fresh, clean surface that can be used for long-lasting plasma discharges."

Along with Maingi, the research team included engineer Charles Gentile and benefitted from key leadership and insights from physicist Leonid Zakharov, who previously worked at PPPL. Scientists from the Institute of Plasma Physics at the Chinese Academy of Sciences were part of the team, which built the limiter to use only a small amount of lithium and operate at low pressure to ensure safety.

The device incorporates an electromagnetic pump that circulates the lithium from a distributor to the top of an angled guide plate inside the EAST tokamak. This pump works with the magnetic field within EAST to drive the lithium to the top of the plate during plasma discharges. The lithium then flows down the front surface of the plate and serves as the main point of contact between the plasma and the plasma-facing components of the EAST vessel.

This system reduces the production of impurities that typically are created when the plasma reaches other components of the vessel. Moreover, plasmas tolerate higher amounts of lithium impurities, compared with the impurities from other materials, because the low atomic number of lithium produces very low amounts of plasma radiation that typically cools the plasma core.

Serving as the main point of contact with plasma enables the lithium to absorb the hot deuterium ions that drift from the center of the plasma, and keeps them from striking the interior walls of the tokamak and cooling down. Limiting the amount of cool deuterium at the edge of the plasma reduces the difference in temperature between the hot plasma center and the cooler edge, and reduces turbulence.

As a side note, however, contact with the ions was found to slightly damage the thin stainless steel foil surface of the limiter device, prompting work on an improved design.

Researchers increased their control of the amount of lithium that flowed down the front of the guide plate by varying the amount of electric current to the electromagnetic pump. This control was important because researchers did not know before the experiment how much lithium was required for optimum plasma performance. More control of the limiter means more control over the performance of a tokamak, a crucial ability when trying to create and maintain optimal conditions for fusion reactions.

All in all, the experiment confirmed that liquid lithium can be driven through an electromagnetic pumping device that works with a tokamak's magnetic field to raise and recirculate the liquid metal and improve tokamak performance. Next step in the research will be to modify the surface of the limiter to reduce the damage caused by contact with the ions.

Research paper: First results of the use of a continuously flowing lithium limiter in high performance discharges in the EAST device


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
New plasma source favorable for hydrogen negative ion beam is developed
Sendai, Japan (SPX) Apr 07, 2016
Researchers at Tohoku University have discovered a new plasma wave phenomenon, leading to the development of a negative ion source for fusion plasma heating. Led by Associate Prof K. Takahashi and Prof A. Ando, the team demonstrated adjoining generations of high and low electron temperature plasmas, based on the presently discovered plasma wave physics. Development of neutral beam injectio ... read more


ENERGY TECH
Study shows best way to reduce energy consumption

US tech giants file brief in favor of Obama 'clean power' plan

Four killed at anti-China power plant protest in Bangladesh

Human impact forms 'striking new pattern' in Earth's global energy flow

ENERGY TECH
Defects in LED diodes that lead to less efficient solid state lighting identified

Transition of copper-oxide compound studied in fine detail

Impossible superconductors gone live

New plasma source favorable for hydrogen negative ion beam is developed

ENERGY TECH
Scotland generated most of its electricity in 2015 through renewables

RWE making bold moves in Scottish renewables

Wind energy growing, IEA report finds

Momentum building behind U.S. wind energy

ENERGY TECH
India: The Future King of Sovereign Solar

China solar giant says president 'assisting' inquiries

Perovskite solar-cell absorbers improved by giving them a squeeze

Graphene layer lets solar panels to generate energy in rain

ENERGY TECH
Luxembourg offers cash to help close ageing French nuke plant

French nuclear plant could become electric car factory

Four of Japan's NPP operators seeking to reach deal on safety cooperation

Japan's only working nuclear reactors can stay online

ENERGY TECH
Enzyme leads scientists further down path to pumping oil from plants

Penn chemists lay groundwork for countless new, cleaner uses of methane

Dung, offal make clean gas at Costa Rica slaughterhouse

ORNL invents tougher plastic with 50 percent renewable content

ENERGY TECH
Lessons learned from Tiangong 1

China launches SJ-10 retrievable space science probe

Has Tiangong 1 gone rogue

China's 1st space lab Tiangong-1 ends data service

ENERGY TECH
Islands facing a dry future

World Bank taking bolder climate steps

Climate models underestimate warming by exaggerating cloud brightening

Paris climate talks cut back on hot air: report









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.