Energy News
ENERGY TECH
Optimizing Thermal Stability in Solid Oxide Fuel Cells
illustration only
Optimizing Thermal Stability in Solid Oxide Fuel Cells
by Simon Mansfield
Sydney, Australia (SPX) Jul 23, 2024

Solid oxide fuel cells (SOFCs) represent a highly efficient and clean energy conversion technology, directly converting chemical energy into electrical energy through electrochemical reactions. These cells are increasingly used for distributed and stationary power generation. However, practical application demands consideration of user operations and maintenance, which often subjects the device to significant temperature fluctuations. In residential settings, SOFC systems frequently cycle on and off based on the homeowner's needs.

SOFCs can experience temperature changes during operation, especially when generating electricity from waste heat in industrial processes or thermal power plants, where heat supply is inconsistent. Additionally, environmental factors like diurnal temperature variations and extreme weather conditions can lead to substantial thermal fluctuations. These temperature variations cause thermal stresses due to the mismatch in the thermal expansion coefficients (TEC) of different SOFC components, potentially degrading the interfaces and reducing the power output. Therefore, maintaining thermal cycle stability is critical for the commercialization of SOFC technology.

A recent study by a team of material scientists, led by Liangzhu Zhu from the Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, China, proposed a novel approach. They synthesized single perovskite oxide decorated R-P structured oxide using a self-assembly method to enhance catalytic activity and stability. This work demonstrated excellent TEC matching between strontium lanthanum ferrate and the electrolyte, showcasing its potential as a competitive air electrode for SOFCs.

"In this report, we synthesized dual-phase La0.8Sr1.2FeO4+d and La0.4Sr0.6FeO3-d by the simple self-assembly method. The single perovskite oxide, La0.4Sr0.6FeO3-d (LSF-P), with cubic structure and high catalytic activity was introduced to facilitate charge transport across the R-P structured oxides La0.8Sr1.2FeO4+d (LSF-RP) with various orientations. This approach overcomes the anisotropy inherent in the structure and concurrently enhances the catalytic activity of the composite electrode. The intimate hetero-interfaces that may form in situ between LSF-RP and LSF-P particles are anticipated to expedite the charge transfer process, thereby enhancing the ORR kinetics. We present the influence of the LSF-P content in dual phase on the phase structure, thermal expansion coefficient, electrode reaction kinetics, single cell performance under thermal cycling and reversible conditions in detail. The obtained results indicate that the incorporation of LSF-P improves the oxygen surface exchange kinetics, reduces the polarization resistance and significantly enhances the single-cell performance without sacrificing the stability of the composite electrode," said Liangzhu Zhu, professor at Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, China.

"The TEC values of R-P oxides are comparable to those of the electrolytes commonly utilized in SOFCs. However, it is important to note that R-P oxides exhibit two-dimensional conduction. They demonstrate significant anisotropy in the diffusion of oxygen ions and electrons, with transport predominantly occurring within the a-b plane and minimal movement along the c-axis. Consequently, there is a need to modify the R-P structured material to enhance its charge transfer capability, thereby increasing their catalytic activity, without sacrificing stability for application in SOFCs," said Liangzhu Zhu.

Introducing a secondary phase is a common strategy to boost the catalytic activity of R-P oxides. "Mechanical mixing is a relatively straightforward method for the introduction of secondary phase. While mechanical mixing can enhance electrode performance to some degree, it struggles with achieving a homogeneous distribution of the phases, which in turn restricts the interfacial contact between them. Infiltration is another alternative for introducing the second phase material. However, it is a cumbersome and time-consuming process that requires multistep operations," said Yang Zhang, one of the co-first authors and a postdoctoral researcher at Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, China.

"The self-assembly synthesis technique for fabricating composite materials is capable of yielding thermodynamically stable and homogeneously dispersed dual-phase structures in a single, streamlined operation. By merely adjusting the ratios of the starting materials, the incorporation of the second phase can be finely tuned. Furthermore, this self-assembly approach holds significant promise for creating numerous heterogeneous structural interfaces within composite air electrodes, which in turn can significantly boost the kinetics of the oxygen reduction reaction (ORR). Additionally, the method has the potential to greatly enhance the performance of composite air electrodes by optimizing the ORR process," said Liangzhu Zhu.

Research Report:An innovative and facile synthesis route of (La,Sr)2FeO4+d-La0.4Sr0.6FeO3-d composite as a highly stable air electrode for reversible solid oxide cell applications

Related Links
Tsinghua University
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Rock-Based Super Battery Set to Revolutionize Electric Cars
Berlin, Germany (SPX) Jul 22, 2024
In a decade, solid-state batteries derived from rock silicates are poised to become a greener, more efficient, and safer alternative to today's lithium-ion batteries. Researchers at the Technical University of Denmark (DTU) have patented an innovative superionic material made from potassium silicate-a mineral extractable from ordinary rocks. Currently, the range and charging speed of electric car batteries are limited by lithium-ion technology, which also poses environmental and supply chain chall ... read more

ENERGY TECH
Bosch to buy US firm's air conditioning business

UK climate strategy under scrutiny at landmark court case

Iraq to import electricity from Turkey

Climate talks host urges rich nations to break stalemate

ENERGY TECH
Optimizing Thermal Stability in Solid Oxide Fuel Cells

FLARE Fusion Neutron System Unveiled by SHINE Technologies

Rock-Based Super Battery Set to Revolutionize Electric Cars

EU, Serbia sign deal to kickstart lithium battery development

ENERGY TECH
Engineers Develop Cost-Effective Seafloor Testing Device for Offshore Wind Farms

Why US offshore wind power is struggling - the good, the bad and the opportunity

Robots enhance wind turbine blade production at NREL

ENERGY TECH
NREL explores long-term strategies for sustainable perovskite solar panels

3D-printed microstructure forest enhances solar steam desalination

CityUHK Develops Advanced Passivator for Stable Perovskite Solar Cells

Renewables overproduction turns electricity prices negative

ENERGY TECH
Russia and Kyrgyzstan sign radioactive decontamination deal

Framatome to provide nuclear fuel for Slovakian VVER Reactors

Russia, Kyrgyzstan sign radioactive decontamination deal

South Korea's KHNP wins multi-billion-dollar Czech nuclear tender

ENERGY TECH
Chemists Develop Efficient Method to Convert CO2 into Sustainable Fuel

Chemists design novel method for generating sustainable fuel

Methanol-powered ship to set sail for Europe's first 'green' route

Shell sees heavy writedowns in Q2 due to shelved biofuel project

ENERGY TECH
Philippines races to avoid 'environmental catastrophe' from oil spill

Chinese oil company suspends Niger construction over 'terrorist' threat

Oil-tainted lake a symptom, and symbol, of Venezuela's collapse

COP29 hosts urge fossil fuel majors to donate to climate fund

ENERGY TECH
UK climate strategy under scrutiny at landmark court case

Jail terms for UK climate activists stoke protest rights fears

Researcher Investigates Hidden Climate Impacts of Soil and Air

US pledges $39 mn to fight hunger in drought-hit Zimbabwe

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.