Observation of a self-generated current to self-confine fusion plasmas by Staff Writers Seoul, South Korea (SPX) Nov 09, 2022
Nuclear fusion has drawn more attention in the era of carbon neutrality because of no carbon dioxide production during power generation and no generation of high-level radioactive wastes. A tokamak, a torus-shaped nuclear fusion device, needs an electric current in the plasma to produce magnetic field around the torus for confining fusion plasmas. Plasma current is conventionally generated by electromagnetic induction. However, for a steady-state fusion reactor, minimizing the inductive current is essential to extend the tokamak operating duration. Several non-inductive current drive schemes have been developed for steady-state operations such as radio-frequency waves and neutral beams. However, commercial reactors require minimal use of these external sources to maximize the fusion gain, Q, the ratio of the fusion power to the external power. Apart from these external current drives, a self-generated current, so-called bootstrap current, was predicted theoretically and demonstrated experimentally. The research team led by Prof. Yong-Su Na in the Department of Nuclear Engineering at Seoul National University and Dr. Jaemin Seo at Princeton University have revealed that another type of self-generated current can exist in a tokamak which can not yet been explained by present theories. They discovered this in the experiments on the KSTAR tokamak in collaboration with Korea Institute of Fusion Energy, Princeton Plasma Physics Laboratory, and General Atomics. While conducting an experiment on plasma turbulence, it was discovered by chance that an un-identified plasma current that could not be explained by existing theories and simulations occurred. As a result of the analysis, it was found that this comprises a significant amount up to 30% of the total plasma current, and appears when the turbulence was relatively low. The discovery of a new plasma current generated by itself without magnetic induction shows a new possibility that the plasma confines by itself and continues the fusion reaction in long-pulse operations for a fusion reactor. The new current source in this experiment was unusually observed only when the fuel was injected into the plasma and the exact cause is still unknown, so follow-up studies are planned to proceed actively in the future. Prof. Yong-Su Na, the co-first author and corresponding author of the study, said, "This result was obtained from a unfamiliar experiment to the extent that the experiment proposal was not selected at KSTAR. If we had tried to look at it from a conventional point of view, we would not have found it. "We were able to discover new things by approaching with an open perspective rather than being confined to what we wanted to see or get." Another co-first author, Dr. Seo Jae-min, said, "Big science such as the nuclear fusion research is being devoted to small steps that put an apple on the shoulders of giants. I hope that future scientists who can step forward together will be interested in and support the nuclear fusion research." Once the physics mechanism is found, this new discovery is expected to significantly contribute to the long continuous operation of ITER and commercial reactors, which are exploring current drive ways that do not reoly on inductive current.
Research Report:Observation of a new type of self-generated current in magnetized plasmas
Delgado-Aparicio appointed to national fusion advisory committee Plainsboro NJ (SPX) Nov 08, 2022 Luis Delgado-Aparicio, a principal research physicist at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), has been named a member of the Fusion Energy Sciences Advisory Committee (FESAC), which advises the director of the United States Office of Science on complex scientific and technical matters related to America's fusion energy sciences research program. Delgado-Aparicio will specifically provide advice about confining plasma, ultra-hot gas sometimes known as th ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |