Energy News  
ENERGY TECH
Next-generation solid electrolyte technology key to building solid state batteries
by Staff Writers
Daegu, South Korea (SPX) Jan 01, 2023

Lithium-ion batteries (LIBs) have been adopted as energy storage systems in portable electronic devices and electric vehicles, being indispensable to human beings in recent years.

Professor Lee Jong-won's team of the Department of Energy Science and Engineering at DGIST (President: Kuk Yang), together with Professor Moon Jang-hyeok's team from the Chung-Ang University, announced the development of solid electrolytes with enhanced atmospheric stability on Wednesday, December 7.

Lithium ion batteries are widely used as energy storage systems for electronic products and electric vehicles. However, since it is vulnerable to ignition as it is manufactured mainly with flammable organic liquid electrolytes, safety issues have been continuously raised as of late.

On the other hand, oxide-based solid electrolytes have the advantage of having high thermal stability and physically preventing the growth of lithium dendrites. Among them, Li7La3Zr2O12 (hereinafter, "LLZO") electrolyte is considered as a next-generation electrolyte due to its excellent lithium ion conductivity.

Despite these advantages, LLZO electrolyte has a problem - Lithium carbonate forms on the surface due to reaction with moisture and carbon dioxide when exposed to the atmosphere. Lithium carbonate is formed on the surface and then grows along the grain boundaries penetrating into the solid electrolyte and disturb the transfer of lithium ions, which lowers the lithium ion conductivity of the LLZO solid electrolyte.

The research team improved the atmospheric stability of the LLZO electrolyte through the hetero-elemental doping of gallium and tantalum, i.e. by adding gallium and tantalum to pure LLZO electrolytes. In particular, it was verified that 'LiGaO2,' a third material formed through the addition of gallium, suppresses the surface adsorption of moisture and carbon dioxide, and promotes the growth of particles during thermal treatment, thus preventing growth of lithium carbonate through grain boundaries and maintaining the lithium ion conduction properties of LLZO electrolytes.

As a result, it was empirically verified that lithium ion conductivity is maintained even when stored for a long time in the air, and stable performance was maintained even after repeated lithium electrodeposition/desorption.

DGIST Department of Energy Science and Engineering Professor Jong-Won Lee said, "I expect the solid electrolyte design concept presented by this research team to be helpful in developing high-performance/high-safety all-solid-state batteries incorporating solid electrolytes, which are stable in the atmosphere and have high lithium ion conductivity."

eanwhile, Jung Woo-young in the DGIST Master-Doctor Combined Program participated in this research as the lead author, and the research results were published online on November 2 in 'Energy Storage Materials,' an international journal specializing in energy. In addition, it was carried out with support from the National Research Foundation of Korea's 'Nano and Materials Technology Development Project' and 'Engineering Research Center Project.'

Research Report:Tailoring grain boundary structures and chemistry of Li7La3Zr2O12 solid electrolytes for enhanced air stability


Related Links
Daegu Gyeongbuk Institute of Science and Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Britain to build first Americium space battery
Washington DC (UPI) Dec 9, 2021
The British government is collaborating to build the world's first-ever space battery powered by the element Americium-241. The country's National Nuclear Laboratory and the UK Space Agency made the announcement Friday. Americium is a man-made radioactive metal that is solid under normal conditions. The metal is produced when plutonium absorbs neutrons in nuclear reactors or during nuclear weapons tests. Americium-241 is the most common isotope of the element. Atomic space batteri ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Germany misses 2022 climate target on Ukraine war fallout

Heat will stay on in Europe this winter, but after

Belgian families don gloves for house-heating research

Belgian families don gloves for house-heating research

ENERGY TECH
Next-generation solid electrolyte technology key to building solid state batteries

Berkeley Lab scientists develop a cool new method of refrigeration

Next-generation wireless technology may leverage the human body for energy

International fusion energy project faces delays, says chief

ENERGY TECH
A healthy wind

Intelligent drones to make wind turbines far more efficient

Nine countries join alliance to boost offshore windpower

UAE, Egypt ink major wind energy deal on COP27 sidelines

ENERGY TECH
Interfacial engineering for improved stability of flexible perovskite solar cells

A step towards solar fuels out of thin air

New solar cell material could be used in space

Improving the operational stability of perovskite solar cells

ENERGY TECH
Bulgaria moves to replace Russia nuclear fuel supplies

Reviving Japan's nuclear power industry: not so simple

GE Hitachi submits generic design assessment application in the UK for BWRX-300 Small Modular Reactor

New delay for Finnish nuclear reactor production

ENERGY TECH
Aston University to help power Indonesia with affordable energy made from rice straw

An important step towards strong and durable biobased plastics

Researchers harvest electricity from wood soaking in water

To battle climate change, scientists tap into carbon-hungry microorganisms for clues

ENERGY TECH
Peru hits Spanish energy giant Repsol with new oil spill fines

New method to introduce efficient water splitting for hydrogen production at low voltage

Cheap, sustainable hydrogen through solar power

Iraq oil revenues top $115 billion in 2022

ENERGY TECH
Slime for the climate, delivered by brown algae

After year of climate disasters, world off-track to curb warming

2022 UK's hottest year on record: provisional Met Office figures

US biology textbooks have less climate content than decade ago: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.