New materials for sustainable, low-cost batteries by Staff Writers Zurich, Switzerland (SPX) May 01, 2018
The energy transition depends on technologies that allow the inexpensive temporary storage of electricity from renewable sources. A promising new candidate is aluminium batteries, which are made from cheap and abundant raw materials. Scientists from ETH Zurich and Empa - led by Maksym Kovalenko, Professor of Functional Inorganic Materials - are among those involved in researching and developing batteries of this kind. The researchers have now identified two new materials that could bring about key advances in the development of aluminium batteries. The first is a corrosion-resistant material for the conductive parts of the battery; the second is a novel material for the battery's positive pole that can be adapted to a wide range of technical requirements.
Aggressive electrolyte fluid Kovalenko and his colleagues have found what they are looking for in titanium nitride, a ceramic material that exhibits sufficiently high conductivity. "This compound is made up of the highly abundant elements titanium and nitrogen, and it's easy to manufacture," explains Kovalenko. The scientists have successfully made aluminium batteries with conductive parts made of titanium nitride in the laboratory. The material can easily be produced in the form of thin films, also as a coating over other materials such as polymer foils. Kovalenko believes it would also be possible to manufacture the conductors from a conventional metal and coat them with titanium nitride, or even to print conductive titanium nitride tracks on to plastic. "The potential applications of titanium nitride are not limited to aluminium batteries. The material could also be used in other types of batteries; for example, in those based on magnesium or sodium, or in high-voltage lithium-ion batteries," says Kovalenko.
An alternative to graphite In experiments, samples of the material - particularly those in which the molecular chains congregate in a disorderly manner - proved to be ideal. "A lot of space remains between the molecular chains. This allows the relatively large ions of the electrolyte fluid to penetrate and charge the electrode material easily," Kovalenko explains. One of the advantages of electrodes containing polypyrene is that scientists are able to influence their properties, such as the porosity. The material can therefore be adapted perfectly to the specific application. "In contrast, the graphite used at present is a mineral. From a chemical engineering perspective, it cannot be modified," says Kovalenko. As both titanium nitride and polypyrene are flexible materials, the researchers believe they are suitable for use in "pouch cells" (batteries enclosed in a flexible film).
Batteries for the energy transition Furthermore, lithium is a relatively rare metal and is hard to extract - unlike aluminium, magnesium or sodium. Batteries based on one of the latter three elements are thus seen as a promising option for stationary power storage in the future. However, such batteries are still at the research stage and have not yet entered industrial use.
Research Reports: Polypyrenes as High-Performance Cathode Materials for Aluminum Batteries. and Aluminum Chloride-Graphite Batteries with Flexible Current Collectors Prepared from Earth-Abundant Elements
Nanowires could make lithium ion batteries safer Washington DC (SPX) Apr 26, 2018 From cell phones and laptops to electric vehicles, lithium-ion batteries are the power source that fuels everyday life. But in recent years, they have also drawn attention for catching fire. In an effort to develop a safer battery, scientists report in the ACS journal Nano Letters that the addition of nanowires can not only enhance the battery's fire-resistant capabilities, but also its other properties. In lithium-ion batteries (LIBs), lithium ions move back and forth between electrodes through a ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |