Energy News  
ENERGY TECH
New material could be two superconductors in one
by Elizabeth A. Thomson for MIT News
Boston MA (SPX) Nov 18, 2021

Aravind Devarakonda PhD '21 is lead author of a paper describing an exotic form of superconductivity.

MIT physicists and colleagues have demonstrated an exotic form of superconductivity in a new material the team synthesized only about a year ago. Although predicted in the 1960s, until now this type of superconductivity has proven difficult to stabilize. Further, the scientists found that the same material can potentially be manipulated to exhibit yet another, equally exotic form of superconductivity.

The work was reported in the Nov. 3 issue of the journal Nature.

The demonstration of finite momentum superconductivity in a layered crystal known a natural superlattice means that the material can be tweaked to create different patterns of superconductivity within the same sample. And that, in turn, could have implications for quantum computing and more.

The material is also expected to become an important tool for plumbing the secrets of unconventional superconductors. This may be useful for new quantum technologies. Designing such technologies is challenging, partly because the materials they are composed of can be difficult to study. The new material could simplify such research because, among other things, it is relatively easy to make.

"An important theme of our research is that new physics comes from new materials," says Joseph Checkelsky, lead principal investigator of the work and the Mitsui Career Development Associate Professor of Physics. "Our initial report last year was of this new material. This new work reports the new physics."

Checkelsky's co-authors on the current paper include lead author Aravind Devarakonda PhD '21, who is now at Columbia University. The work was a central part of Devarakonda's thesis. Co-authors are Takehito Suzuki, a former research scientist at MIT now at Toho University in Japan; Shiang Fang, a postdoc in the MIT Department of Physics; Junbo Zhu, an MIT graduate student in physics; David Graf of the National High Magnetic Field Laboratory; Markus Kriener of the RIKEN Center for Emergent Matter Science in Japan; Liang Fu, an MIT associate professor of physics; and Efthimios Kaxiras of Harvard University.

New quantum material
Classical physics can be used to explain any number of phenomena that underlie our world - until things get exquisitely small. Subatomic particles like electrons and quarks behave differently, in ways that are still not fully understood. Enter quantum mechanics, the field that tries to explain their behavior and resulting effects.

Checkelsky and colleagues discovered a new quantum material, or one that manifests the exotic properties of quantum mechanics at a macroscopic scale. In this case, the material in question is a superconductor.

Checkelsky explains that fairly recently there has been a boom of realizing special superconductors that are two-dimensional, or only a few atomic layers thick. These new ultrathin superconductors are of interest in part because they are expected to give insights into superconductivity itself.

But there are challenges. For one, materials only a few atomic layers thick are themselves difficult to study because they are so delicate. Could there be another approach to plumbing their secrets?

The new material made by Checkelsky and colleagues can be thought of as the superconducting equivalent of a layer cake, where one layer is an ultrathin film of superconducting material, while the next is an ultrathin spacer layer that protects it. Stacking these layers one atop another results in a large crystal (this happens naturally when the constituent elements of sulfur, niobium, and barium are heated together). "And that macroscopic crystal, which I can hold in my hand, behaves like a 2D superconductor. It was very surprising," Checkelsky says.

Many of the probes scientists use to study 2D superconductors are challenging to use on atomically thin materials. Because the new material is so large, "we now have many more tools [to characterize it]," Checkelsky says. In fact, for the work reported in the current paper the scientists used a technique that requires massive samples.

Exotic superconductors
A superconductor carries charge in a special way. Instead of via one electron, charge is carried by two electrons bound together in what is known as a Cooper pair. Not all superconductors are the same, however. Some unusual forms of superconductivity can only appear when the Cooper pairs can move unimpeded through the material across relatively long distances. The longer the distance, the "cleaner" the material.

The Checkelsky team's material is extremely clean. As a result, the physicists were excited to see if it might exhibit an unusual superconducting state, which it does. In the current paper the team shows that their new material is a finite momentum superconductor upon the application of a magnetic field. This particular kind of superconductivity, which was proposed in the 1960s, has remained a fascination to scientists.

While superconductivity is usually destroyed by modest magnetic fields, a finite momentum superconductor can persist further by forming a regular pattern of regions with lots of Cooper pairs and regions that have none. It turns out this kind of superconductor can be manipulated to form a variety of unusual patterns as Cooper pairs move between quantum mechanical orbits known as Landau levels. And that means, Checkelsky says, that scientists should now be able to create different patterns of superconductivity within the same material.

"This is a striking experiment which is able to demonstrate Cooper pairs moving between Landau levels in a superconductor, something that has never been observed before. Frankly, I never anticipated seeing this in a crystal you could hold in your hand, so this is very exciting. To observe this elusive effect, the authors had to perform painstaking, high-precision measurements on a uniquely two-dimensional superconductor that they had previously discovered. It's a remarkable achievement, not only in its technical difficulty, but also in its cleverness," says Kyle Shen, professor of physics at Cornell University. Shen was not involved in the study.

Further, the physicists realized that their material also has the ingredients for yet another exotic kind of superconductivity. Topological superconductivity involves the movement of charge along edges or boundaries. In this case, that charge could travel along the edges of each internal superconducting pattern.

The Checkelsky team is currently working to see if their material is indeed capable of topological superconductivity. If so, "can we combine both new types of superconductivity? What could that bring?" Checkelsky asks.

"It's been a lot of fun realizing this new material," he concludes. "As we've dug into understanding what it can do, there have been a number of surprises. It's really exciting when new things come out that we don't expect."

This work was supported by the Gordon and Betty Moore Foundation, the Office of Naval Research, the U.S. Department of Energy (DOE) Office of Science, the National Science Foundation (NSF), and the Rutgers Center for Materials Theory.

Computations were performed at Harvard University. Other parts of the work were performed at the National High Magnetic Field Laboratory, which is supported by the NSF, the State of Florida, and Department of Energy.

Research Report: "Signatures of bosonic Landau levels in a finite-momentum superconductor"


Related Links
MIT Materials Research Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Storing energy in plants with electronic roots
Linkoping, Sweden (SPX) Nov 12, 2021
By watering bean plants (Phaseolus vulgaris) with a solution that contains conjugated oligomers, researchers at the Laboratory of Organic Electronics, Linkoping University, have shown that the roots of the plant become electrically conducting and can store energy. Dr Eleni Stavrinidou, Associate Professor and Principal Investigator in the Electronic Plants Group at the Laboratory of Organic Electronics, showed in 2015 that circuits can be fabricated in the vascular tissue of roses. The conducting ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Top banking regulator urges climate rules for lenders

Global powers urged to go further after UN climate deal

COP26 strikes hard-fought deal but UN says 'not enough'

World needs trillions to face climate threat: draft UN report

ENERGY TECH
The reasons behind lithium-ion batteries' rapid cost decline

Thermal energy storage could play major role in decarbonizing buildings

Sustainable electrochemical process could revolutionize lithium-ion battery recycling

New material could be two superconductors in one

ENERGY TECH
DLR starts cooperation with ENERCON

RWE ups renewables investment as end to coal looms

Green hydrogen from expanded wind power in China

Scientists bring efficiency to expanding offshore wind energy

ENERGY TECH
Making solar energy even more sustainable with light-powered technology

Israel, Jordan agree US-brokered solar power for water deal

Mystery of high performing novel solar cell materials revealed in stunning clarity

Ultrathin solar cells get a boost

ENERGY TECH
Robotics specialists share their ongoing projects

Framatome completes purchase of Rolls Royce Civil Nuclear Instrumentation and Control

Framatome delivers industry's first complete accident tolerant fuel assembly

Options for the Diablo Canyon nuclear plant

ENERGY TECH
How sugar-loving microbes could help power future cars

Feeding sugar to bacteria may lead to less harmful fuel for cars, trucks

Bioenergy crops better for biodiversity than food-based agriculture

Recycling CO2 to fuel a carbon-neutral future

ENERGY TECH
Market forces halved methane emissions from Uinta Basin oil and gas wells

Australian energy firm sparks outrage with new gas project

Austin says US unwavering in 'strong' Mideast security commitment

New technique improves conversion of carbon dioxide into liquid fuels

ENERGY TECH
Climate envoy Kerry voices hope for more US-China cooperation

'Down' but not 'out': Growth needs fuel India's coal addiction

Harvard calls for more comprehensive research into solar geoengineering

Pacific Ocean, not ice sheet, shifted West Coast storms south









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.