New electrical energy storage material shows its power by Staff Writers Chicago IL (SPX) Aug 26, 2016
A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range. An electric car currently relies on a complex interplay of both batteries and supercapacitors to provide the energy it needs to go places, but that could change. "Our material combines the best of both worlds - the ability to store large amounts of electrical energy or charge, like a battery, and the ability to charge and discharge rapidly, like a supercapacitor," said Dichtel, a pioneer in the young research field of covalent organic frameworks (COFs). Dichtel and his research team have combined a COF - a strong, stiff polymer with an abundance of tiny pores suitable for storing energy - with a very conductive material to create the first modified redox-active COF that closes the gap with other older porous carbon-based electrodes. "COFs are beautiful structures with a lot of promise, but their conductivity is limited," Dichtel said. "That's the problem we are addressing here. By modifying them - by adding the attribute they lack - we can start to use COFs in a practical way." And modified COFs are commercially attractive: COFs are made of inexpensive, readily available materials, while carbon-based materials are expensive to process and mass-produce. Dichtel, the Robert L. Letsinger Professor of Chemistry at the Weinberg College of Arts and Sciences, is presenting his team's findings today (Aug. 24) at the American Chemical Society (ACS) National Meeting in Philadelphia. Also today, a paper by Dichtel and co-authors from Northwestern and Cornell University was published by the journal ACS Central Science. To demonstrate the new material's capabilities, the researchers built a coin-cell battery prototype device capable of powering a light-emitting diode for 30 seconds. The material has outstanding stability, capable of 10,000 charge/discharge cycles, the researchers report. They also performed extensive additional experiments to understand how the COF and the conducting polymer, called poly(3,4-ethylenedioxythiophene) or PEDOT, work together to store electrical energy. Dichtel and his team made the material on an electrode surface. Two organic molecules self-assembled and condensed into a honeycomb-like grid, one 2-D layer stacked on top of the other. Into the grid's holes, or pores, the researchers deposited the conducting polymer. Each pore is only 2.3 nanometers wide, but the COF is full of these useful pores, creating a lot of surface area in a very small space. A small amount of the fluffy COF powder, just enough to fill a shot glass and weighing the same as a dollar bill, has the surface area of an Olympic swimming pool. The modified COF showed a dramatic improvement in its ability to both store energy and to rapidly charge and discharge the device. The material can store roughly 10 times more electrical energy than the unmodified COF, and it can get the electrical charge in and out of the device 10 to 15 times faster. "It was pretty amazing to see this performance gain," Dichtel said. "This research will guide us as we investigate other modified COFs and work to find the best materials for creating new electrical energy storage devices."
Reseach Report: "Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework." In addition to Dichtel, other authors are Ryan P. Bisbey, of Northwestern; Catherine R. Mulzer (nee DeBlase, first author), currently at Dow Electronic Materials; and Luxi Shen, James R. McKone, Na Zhang and Hector D. Abruna, of Cornell.
Related Links Northwestern University Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |