New chromium-based superconductor has an unusual electronic state by Staff Writers Kobe, Japan (SPX) Jul 27, 2017
When certain materials are cooled below a critical temperature they become superconductors, with zero electrical resistance. An international research team observed an unusual electronic state in new superconductor chromium arsenide. This finding could prove useful in future superconductor research and material design. The study was published on June 5 in Nature Communications. These discoveries were made by a research team at the Chinese University of Hong Kong in collaboration with Associate Professor KOTEGAWA Hisashi (Kobe University Graduate School of Science) and other researchers from Kobe University and Kyoto University. Well-known superconductors include high-temperature copper-oxide superconductors and iron-based superconductors. These have two-dimensional layered crystal structures. In contrast, chromium arsenide has a "non-symmorphic" crystal structure formed by zigzag chains of chromium (see figure 1). The relationship between this crystal structure and its superconductivity has drawn attention from scientists. The superconductivity of chromium arsenide was discovered in 2014 under pressure, and it is the first magnetic superconductor to incorporate chromium. The research group found that at ultralow temperatures, the electrical resistance of chromium arsenide shows a linear increase against the magnetic field. In normal metals the resistance increases as a square of the magnetic field, creating a curved (parabolic) graph, but the magnetic field resistance of chromium arsenide makes a linear graph (see figure 2). Linear magnetic resistance is created under extremely special circumstances when electron mass within a solid effectively becomes smaller. There are cases of it occurring in non-magnetic low carrier materials, but chromium arsenide is a metal with strong magnetic properties and very different qualities from other materials that have shown linear magnetic resistance. The special crystal structure of chromium arsenide may have created this unusual electronic state. These findings show that the superconductivity of chromium arsenide features an unusual electronic state, information that could contribute to superconductivity research and material design.
Raleigh NC (SPX) Jul 25, 2017 Researchers at North Carolina State University have significantly increased the temperature at which carbon-based materials act as superconductors, using a novel, boron-doped Q-carbon material. The previous record for superconductivity in boron-doped diamond was 11 Kelvin, or minus 439.60 degrees Fahrenheit. The boron-doped Q-carbon has been found to be superconductive from 37K to 57K, whi ... read more Related Links Kobe University Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |