Energy News
ENERGY TECH
New approach may help extract more heat from geothermal reservoirs
illustration only
New approach may help extract more heat from geothermal reservoirs
by Staff Writers
University Park PA (SPX) Sep 25, 2023

Geothermal heat offers a promising source of renewable energy with almost zero emissions, but it remains a relatively expensive option to generate electricity. A new technique proposed by Penn State scientists may help prevent "short-circuits" that can cause geothermal power plants to halt production, potentially improving the efficiency of geothermal power, the researchers said.

"The public perception of geothermal is that since it's renewable we should be able to produce from these resources infinitely," said co-corresponding author Arash Dahi Taleghani, professor of petroleum engineering at Penn State. "In practice, it doesn't work like that. Here we proposed a solution that could help overcome a major challenge in the field."

Enhanced geothermal systems involve injecting cold water into hot dry rock deep underground. The water travels through fractures in the rock and heats up, and production wells then pump the heated liquid to the surface where a power plant turns it into electricity.

However, wide fractures may allow large volumes of water to move too quickly to sufficiently heat up before reaching the production wells. Cooler production liquid impacts the efficiency of the power plant and can compromise the economics of the project, the scientists said.

"With these projects, you can get cold-water breakthroughs," Dahi Taleghani said. "Basically, the water takes a shortcut passing through the reservoir. And because the water doesn't have a chance to heat up it can basically short-circuit the system."

Producers try to prevent these shortcuts before they form by adjusting how much water circulates through the system or potentially shutting down production periodically, the scientists said. This means the plant cannot produce continuously, which would be a major benefit of geothermal heat over other sources of renewable energy like solar and wind.

The researchers instead have proposed adding materials or chemicals to the liquid pumped into the reservoir that would autonomously control flow from inside the rock itself. The process, called the fracture conductivity tuning technique, involves adding materials that could change properties with the temperature, hindering cold water and allowing hot water to flow through the fractures.

"All these things are happening inside rock - we don't have any access, and it's so hot and the pressure is so high that you can't have a valve or sensor there," Dahi Taleghani said. "But with this method, we can add something that basically acts like an autonomous regulator, reducing the fluid passing through each fracture when some parts of the reservoir get cold and letting it go if it's hot."

The goal is to spread the flow more uniformly across the reservoir to sweep more heat from the rocks to the production wells and to prevent shortcuts that allow cooler water to rush to the production wells while heat remains in underutilized portions of the reservoir, the scientists said.

Using modeling techniques, the team found the process could increase the cumulative heat extraction at an enhanced geothermal site by more than 65% over 50 years of production and could prevent early appearances of cold-water breakthroughs.

"These findings confirm significant improvements in energy that can be harvested by using this technique," said co-author Qitao Zhang, a doctoral candidate in the John and Willie Leone Department of Energy and Mineral Engineering and co-author on the paper. "We are proposing an effective approach by controlling the flow deep inside the reservoir."

Reservoirs with high fracture density and connectivity, like the complicated geologies found in real-world settings, could provide even better results, the scientists said.

The team developed a field case by mapping the fracture networks from a rock outcrop in Arches National Park in Utah and found that if they applied their technique in this real-world geology, it would provide an extra heat extraction of 101% over 50 years of production.

"This technology could be used to make renewables cost-effective and competitive with other energy sources," Dahi Taleghani said. "This shows there are still tremendous energy resources in the subsurface that we can use without damaging our environment."

Research Report:Autonomous fracture flow tunning to enhance efficiency of fractured geothermal systems

Related Links
Penn State
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Golden future for thermoelectrics
Vienna, Austria (SPX) Sep 25, 2023
Thermoelectrics enable the direct conversion of heat into electrical energy - and vice versa. This makes them interesting for a range of technological applications. In the search for thermoelectric materials with the best possible properties, a research team at TU Wien investigated various metallic alloys. A mixture of nickel and gold proved particularly promising. The researchers recently published their results in the renowned journal Science Advances. Using thermoelectrics to generate electrici ... read more

ENERGY TECH
Biden launches 'climate corps' for green jobs

UK business gives new net zero approach frosty reception

US, China absent from major UN climate meet

Eyeing inflation, Sweden relaxes green ambitions; UK backtracks on net zero

ENERGY TECH
New approach may help extract more heat from geothermal reservoirs

Warming up! 30 years of fusion-energy research at EPFL

Golden future for thermoelectrics

Improving the properties of sweeteners for enhanced thermal energy storage

ENERGY TECH
Harvesting wind energy in small countries with low wind speed and limited

How wind turbines react to turbulence

Work starts on key German wind power energy line

No offshore wind in latest UK green energy auction

ENERGY TECH
Solar panels go into service near North Pole

Flexible solar cell achieves major power conversion efficiency gains

The tricky path to tripling renewable energy capacity

New insight for stabilizing halide perovskite via thiocyanate substitution

ENERGY TECH
UK and Japan partnership to develop new technologies for nuclear waste disposal

Toshiba says $14 bn offer to go private set to succeed

Framatome breaks industry record for safe and timely reactor vessel exam at Surry Power Station

Rwanda inks deal to build nuclear reactor

ENERGY TECH
Making aviation fuel from biomass

Chevron, partners develop a transportation fuel using animal waste as a feedstock

Illinois research leading to cleaner propane production method

Transforming flies into degradable plastics

ENERGY TECH
Unusually deep methane leak in Baltic Sea: researchers

Crown prince says Saudi 'closer' to Israel normalization

Ex-UN climate chief has 'lost patience' with fossil fuel industry

Ad firm Havas wins Shell contract and climate criticism

ENERGY TECH
For climate activists, New York's lights shine too bright

COP28 will include first local climate summit

NASA Announces Summer 2023 Hottest on Record

Half of glaciers vanish with 1.5 degrees of warming

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.