Energy News  
New System Monitors Tiny Earthquakes In Bones To Prevent Fractures

Jared Diegmueller (seated), a doctoral student in Purdue's Weldon School of Biomedical Engineering, and associate professor Ozan Akkus discuss details about a prototype device that could help to prevent stress fractures by monitoring the formation of "microcracks" in bones. The tiny cracks can lead to hairline stress fractures unless detected in time. The research goal is to create a device that would alert the person wearing it when a stress fracture was imminent so that they could stop rigorous physical activity long enough for the bone to heal. (Purdue News Service/David Umberger)
by Staff Writers
West Lafayette IN (SPX) Sep 14, 2006
Researchers are applying the same basic technique seismologists use to measure earthquakes for a new medical technology that promises to prevent stress fractures by detecting the formation of tiny cracks in bones. The crack formation generates waves similar to those created by earthquakes.

Researchers at Purdue University and the University of Toledo have collaborated to create a prototype device that could be used to monitor the formation of these "microcracks" in bones that can lead to hairline stress fractures unless detected in time.

"The goal is to create a wearable device that would alert the person when a stress fracture was imminent so that they could stop rigorous physical activity long enough for the bone to heal," said Ozan Akkus (pronounced Ah-Koosh), an associate professor in Purdue's Weldon School of Biomedical Engineering.

The system records "acoustic emission data," or sound waves created by the tiny bone fissures. The same sorts of acoustic emissions are used to monitor the integrity of bridges, other structures and mechanical parts like helicopter turbine blades.

"I asked, why not use the same approach to study stress fractures?" Akkus said.

Such a technology could help prevent serious stress fractures in racehorses and those who perform in situations that cause undue stress to bones, such as soldiers, athletes and dancers. The system could be especially useful in preventing fractures in U.S. Army recruits undergoing basic training.

"Strenuous military exercises subject soldiers to prolonged physical activity in which relatively small forces are repeatedly exerted on bones," Akkus said. "The forces are not initially strong enough to break a bone, but it's the repetition that poses the most danger by causing microscopic cracks to accumulate over time and eventually result in stress fractures."

The cracks form when collagen fibers in bone fail, producing sound waves that cause a rippling motion on the skin's surface.

"This is the same thing that happens during an earthquake, but on a microscopic scale and at a higher frequency," Akkus said. "Instead of an earthquake-size opening, these cracks are about a tenth of a millimeter wide."

Accumulating cracks sometimes cause "spontaneous fractures" that occur without warning, afflicting the young and old alike, including athletes and elderly people suffering from osteoporosis.

A major factor in the crack formation is the dynamic process bones use to continually rebuild themselves. When bone is damaged, specialized cells bore tunnel-like holes to remove the damaged tissue and then fill in the resulting cavity with new bone.

"Bone is a very smart material because it can detect and repair damage," Akkus said. "That's what keeps your bones young. The repair process digs tunnels and fills them, digs tunnels and fills them. There is a continuous renewal, but it takes longer to refill the holes than it does to dig them, so there is always some porosity, which increases the stress locally in the most porous portions of bone."

Hard physical activity without rest increases the stress in these porous areas that are under repair.

"The localized stress in the porous portions then becomes very high, and this can result in a complete stress fracture," Akkus said.

One reason it's difficult to diagnose the hairline fractures is because they are caused by the gradual accumulation of microscopic cracks, which are not detectable with conventional imaging technologies.

"It's really hard to measure stresses in bone without cutting open the bone to study it," Akkus said. "And there is very little warning because you don't have horrible pain. You might have some discomfort, but you can keep exercising or whatever activity you are doing."

From 1 percent to 20 percent of U.S. basic training recruits experience stress fractures in the femur, commonly referred to as shin splints, depending on the service branch and type of training, with the highest incidence in women recruits. In horse racing, 70 percent of young thoroughbreds experience fractures, Akkus said.

The researchers are developing the monitoring technique by studying crack formation in pieces of bone from human cadavers that are placed in a machine that continually bends the bone until it cracks.

Akkus is working with researchers at the University of Toledo to develop a wearable prototype that will record crack-formation data, which could be downloaded to a portable digital assistant, or PDA, for review by medical professionals. Such a device could immediately alert the person by sounding an alarm, and the data could then be scrutinized by a doctor.

"All of the technology is available, and the sensors exist off the shelf," he said. "We just have to modify them to work with our system."

Sensors made of a "piezoceramic" material generate electricity when compressed by a force, such as the vibration created by seismic waves resulting from crack formation.

"Recently, flexible polymer-based sensors have appeared on the market, and these could be incorporated into athletic apparel, such as running shoes and exercise tights to monitor areas most susceptible to fractures," Akkus said. "Ultimately, we would like to do real-time monitoring of damage activity and learn how to distinguish between a small crack and a more structurally threatening defect.

"There are different types of cracks that occur, and it's important to be able to distinguish among them so that we can determine how serious the damage is."

To distinguish the difference between the various types of cracks, researchers are integrating "pattern recognition" software and earthquake models, working with Robert Nowak, a Purdue professor of earth and atmospheric sciences. The multidisciplinary research involves biomedical and electrical engineering, veterinary medicine, and earth and atmospheric sciences.

"One challenge will be to learn when damage is serious enough that you should stop exercising," Akkus said. "You don't want to give a professional athlete a premature warning."

Bones most affected are those in the feet, legs and hips, particularly the ball-and-socket joints that connect the legs to the pelvis.

The research is funded by the U.S. Army Medical Research and Materiel Command.

Community
Email This Article
Comment On This Article

Related Links
Ozan Akkus
Purdue University
All About Human Beings and How We Got To Be Here
Cyberwar - Internet Security News - Systems and Policy Issues



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


HP Chairwoman To Step Down After Spying Scandal
San Francisco (AFP) Sep 12, 2006
Hewlett-Packard chairwoman Patricia Dunn announced her resignation Tuesday after the US technology giant was engulfed in an espionage scandal that could lead to prosecutions. Dunn, who took over last year as non-executive chairwoman after the stormy reign of Carly Fiorina, apologized after private detectives that she had hired to investigate boardroom leaks to the media "went beyond" their mandate.







  • Tiny Fuel Cell Might Replace Batteries In Laptop Computers
  • Using Microbes To Fuel The US Hydrogen Economy
  • MIT Forges Greener Path To Iron Production
  • Air Force Prepares To Test Synthetic Fuel On B-52

  • Nuclear Power Must Displace Natural Gas Says Russian Nuclear chief
  • Russia Plans Massive Boost In Uranium Production
  • Less-Risky Reactor For Clean, Safe Energy
  • Russia Nuclear Chief Cautious Over IAEA Uranium Reserve Proposal

  • NASA Experiment Finds Possible Trigger For Radio-Busting Bubbles
  • California's Model Skies
  • ESA Picks SSTL To Develop Atmospheric CO2 Detector
  • Faster Atmospheric Warming In Subtropics Pushes Jet Streams Toward Poles

  • Fires Rage As Haze Thickens In Borneo
  • Large-Scale Farming Now Causes Substantial Forest Loss in Amazon
  • The Subtleties Of Tropical Forest Demise
  • NASA Satellites Can See How Climate Change Affects Forests

  • China Rejects Claims Of GM Rice Entering EU Foods
  • GM Chinese Rice Maybe Contaminating European Food
  • French Police Arrest Three As Hundreds Try To Destroy GM Crops
  • Japanese Sushi Infatuation Straining Atlantic Tuna Stocks

  • Real-Time Traffic Routing From The Comfort Of Your Car
  • Real-Time Traffic Routing From The Comfort Of Your Car
  • British Police Force To Introduce Greener Cars
  • Two New Segway Models Offered

  • Rolls-Royce wins 800 million dollar deal from Air China
  • US Sanctions On Russia Could Hurt Boeing
  • Boeing Puts Aircraft Market At 2.6 Trillion Dollars
  • Innovative Solutions Make Transportation Systems Safer Secure and Efficient

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement