Neutral particles a drag on disruptive plasma blobs by Staff Writers Pittsburgh PA (SPX) Nov 15, 2021
For decades, scientists have been working to harness clean, renewable fusion energy, which occurs naturally in stars like our sun. Using strong magnetic fields to confine hot plasmas within a donut-shaped device called a tokamak, researchers can generate conditions necessary to induce fusion reactions. Large amounts of heat and particles, however, eventually need to be exhausted from the edge of the tokamak (Figure 1), and conditions in the exhaust region can impact the effectiveness of plasma confinement. Predicting plasma movement in this region is difficult due to the presence of turbulent structures called "blobs." These are localized areas of higher pressure that can move heat and particles across magnetic field lines to material walls. Recent work using the computational plasma framework Gkeyll has revealed an important insight-that including chargeless neutral particles has a key impact on plasma behavior. "Understanding and controlling plasma turbulence and transport in this region is very important since it impacts the lifetime of wall materials," said Dr. Tess Bernard, who led the study in collaboration with scientists from General Atomics and the Princeton Plasma Physics Laboratory (PPPL). "This challenge is further complicated by the fact that neutral atoms in this region interact with plasma particles, and the effect of neutrals on plasma blob behavior is not well understood." The results with neutrals have significant differences in important plasma parameters-density, temperature, and flow levels. This can clearly be seen in Figure 1, where a comparison of plasma simulations near the wall of the National Spherical Torus Experiment (NSTX) at PPPL with and without neutral particles are shown. The inclusion of neutral particles also leads to reduced plasma fluctuations and slower blob motion. This result required a first-of-its-kind coupling between existing methods of simulating plasmas. Historically, a range of simulation tools based on theoretical models have been used to understand experimental observations in the tokamak and make predictions for current and future plasma devices. For example, kinetic models that track particles' location and velocity are more accurate but also more computationally demanding. Fluid models, which track bulk properties such as density, flow and temperature, are generally less demanding but make assumptions that are not valid for all tokamak scenarios. To be self-consistent, codes should contain models for both plasma and neutral dynamics. Comprehensive kinetic models for each, however, can be difficult to couple together due to prohibitive computational demands. Foreseeing this challenge, Gkeyll was developed with efficient algorithms that have facilitated the recent coupling of a gyrokinetic model for plasma dynamics to a kinetic model for neutral atoms. A gyrokinetic model relies on the fact that charged particles orbit quickly around magnetic field lines. This model averages this fast motion, modeling particles as charged rings and reducing the complexity of the problem. Work is ongoing to verify this model with experimental data, and it will be a useful tool for benchmarking other codes. This work is important both in terms of informing future work to minimize the impact of disruptive blobs on fusion power plants, and as an example of the powerful plasma code that was used.
Integrating hot cores and cool edges in fusion reactors Pittsburgh PA (SPX) Nov 15, 2021 Future fusion reactors have a conundrum: maintain a plasma core that is hotter than the surface of the sun without melting the walls that contain the plasma. Fusion scientists refer to this challenge as "core-edge integration." Researchers working at the DIII-D National Fusion Facility at General Atomics have recently tackled this problem in two ways: the first aims to make the fusion core even hotter, while the second focuses on cooling the material that reaches the wall. Protecting the pla ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |