Energy News  
Modeling The Movement Of Electrons At The Molecular Scale

Marshall Newton. Credit: DOE/Brookhaven National Laboratory
by Staff Writers
San Francisco CA (SPX) Sep 20, 2006
Finding more efficient ways of storing and using energy requires scientists to first look at the particles that set these fundamental processes in motion - the electrons. Controlling the movement of electrons through individual molecules could allow for the development of new technologies such as small-scale circuits to be used for a variety of applications including improved solar cells.

Marshall Newton, a theoretical chemist at the U.S. Department of Energy's Brookhaven National Laboratory will give a talk about the theoretical techniques used to understand the factors affecting electron transfer at the 232nd national meeting of the American Chemical Society. The talk will be held at 3:30 p.m. Pacific Time on Monday, September 11, 2006, at the Grand Hyatt San Francisco.

Electron transfer plays a vital role in numerous biological processes, including converting energy from food into useful forms and nerve cell communication. It's also the initial step in photosynthesis, where charges are first separated and the energy is stored for later use. That natural process is one of the concepts behind energy production through solar cells.

"Essentially everything in everyday life is dependent upon electronic interactions," Newton said. "and in particular, we're working to sort out what makes the electrons move from molecule A to molecule B." Scientists like Newton are developing models to understand these interactions in molecular systems, where complex molecules communicate electronically across long distances.

A crucial issue in the electron transfer problem is the change in the positions of atomic nuclei that occur when a molecule or ion gains or loses an electron. Measuring these nuclear configuration changes is an essential part of understanding how the electrons move.

Working in the field for 30 years, Newton is currently focusing on modeling the effect of solvents on electron transfer. As a chemical reaction takes place among the molecules dissolved in solution, chemical bonds are broken and formed and electrical charge is redistributed among the molecules. The solvent environment responds to these changes in a way that strongly controls the energy cost for a successful electron transfer event.

What Newton is trying to develop is a quantitative theory that will allow scientists to reliably predict the probability, or "speed," of electron transfer. A theory with such "predictive power," as Newton calls it, could serve as a basis for designing molecular systems to improve upon photosynthesis and energy production in general. However, once scientists have an understanding of electron transfer itself, they still have to incorporate that knowledge into the chemical processes that surround it, Newton said.

"Electron transfer is just the first major step toward something even more important," he said. "Mechanistic understanding of electron transfer is going to give us an important part of the fundamental knowledge needed to achieve advances in energy technology. But the final goal is not electron transfer, it's making something new."

Community
Email This Article
Comment On This Article

Related Links
DOE/Brookhaven National Laboratory
Powering The World in the 21st Century
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Ferns Provide Model For Tiny Motors Powered By Evaporation
Ann Arbor MI (SPX) Sep 20, 2006
Scientists looked to ferns to create a novel energy scavenging device that uses the power of evaporation to move itself -- materials that could provide a method for powering micro and nano devices with just water or heat. "We've shown that this idea works," said Michel Maharbiz, assistant professor of electrical engineering and computer science and principal investigator in the group that built the device. "If you build these things they will move. The key is to show that you can generate electricity from this."







  • Ferns Provide Model For Tiny Motors Powered By Evaporation
  • Modeling The Movement Of Electrons At The Molecular Scale
  • Bio-Based Products Enhance National Security
  • Syntroleum's Ultra-Clean Jet Fuel To Be Tested In B-52 Flight Demo

  • International Nuclear Fuel Centers Would Offer Unbiased Access Says Putin
  • Iran's Nuclear Chief To Visit Russia On Bushehr NPP Next Week
  • Swedish Nuclear Plants Still Too Unsafe To Re-Open
  • Nuclear Power Must Displace Natural Gas Says Russian Nuclear chief

  • MIT Team Describes Unique Cloud Forest
  • NASA Experiment Finds Possible Trigger For Radio-Busting Bubbles
  • California's Model Skies
  • ESA Picks SSTL To Develop Atmospheric CO2 Detector

  • Republic of Congo Announces Two Massive Protected Areas
  • Growth In Amazon Cropland May Impact Climate And Deforestation Patterns
  • Fires Rage As Haze Thickens In Borneo
  • Large-Scale Farming Now Causes Substantial Forest Loss in Amazon

  • China Rejects Claims Of GM Rice Entering EU Foods
  • GM Chinese Rice Maybe Contaminating European Food
  • French Police Arrest Three As Hundreds Try To Destroy GM Crops
  • Japanese Sushi Infatuation Straining Atlantic Tuna Stocks

  • Car Use Soars In Europe As Road Deaths Fall
  • GM To Launch More Than 100 Fuel Cell SUVs Worldwide
  • Nissan To Test Intelligent Transportation System
  • US Proposes Stability Control Requirement For All Cars

  • L-3 AVISYS Extends Its Civil Aircraft Self-Protection Systems Offerings
  • Fiber Optics Poised to Reach New Heights On Airplanes
  • GE Aviation Launches New Customer Support Center In China
  • Boeing, Chinese Carriers Finalize Orders for Next-Generation 737s

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement