Energy News  
Microbial Fuel Cell Cleans, Generates Electricity From Domestic Wastewater

illustration only

University Park - Feb 25, 2004
Penn State environmental engineers have shown, for the first time, that a microbial fuel cell (MFC) can generate electricity while simultaneously cleaning the wastewater that you flush down the drain or toilet.

So far, the Penn State experiments have produced between 10 and 50 milliWatts of power per square meter of electrode surface or about 5 percent of the amount needed to run one mini-Christmas tree light, while removing up to 78 percent of organic matter as measured by biochemical oxygen demand (BOD).

Dr. Bruce E. Logan, the Kappe professor of environmental engineering and director of the project, says, "MFCs may represent a completely new approach to wastewater treatment. If power generation in these systems can be increased, MFC technology may provide a new method to offset wastewater treatment plant operating costs, making advanced wastewater treatment more affordable for both developing and industrialized nations."

The project is described in a paper, "Production of Electricity During Wastewater Treatment Using a Single Chamber Microbial Fuel Cell," released on-line and scheduled for a future issue of Environmental Science and Technology. The authors are Dr. Hong Liu, postdoctoral researcher in environmental engineering; Ramanathan Ramnarayanan, doctoral candidate in materials; and Logan.

Other researchers have shown that MFCs can be used to produce electricity from water containing pure chemicals including glucose, acetate or lactate. The Penn State researchers are the only ones, so far, to show that MFCs can produce electricity directly from wastewater skimmed from the settling pond of a treatment plant.

Microbial fuel cells work through the action of bacteria which can pass electrons to an anode, the negative electrode of a fuel cell. The electrons flow from the anode through a wire, producing a current, to a cathode, the positive electrode of a fuel cell, where they combine with hydrogen ions (protons) and oxygen to form water.

Logan notes that in MFCs currently under investigation in other laboratories, various kinds of bacteria are typically added to the system. However, in the Penn State approach, no special bacteria are added. The naturally occurring bacteria in wastewater drive power production via a reaction that allows them to transport electrons from the cell surface to the anode. In addition, a reaction (oxidation) that occurs in the interior of the bacterial cell lowers the biochemical oxygen demand, cleaning the water.

The current Penn State MFC is about six inches long and 2.5 inches in diameter. It contains eight anodes, composed of graphite, that supply about 36 square inches of surface area to which the bacteria can adhere and pass electrons. The cathode is a carbon/platinum catalyst/proton exchange membrane fused to a plastic support tube.

Logan notes, "I'm optimistic that MFCs may be able to help reduce the $25 billion annual cost of wastewater treatment in the U.S. and provide access to sanitation technologies to countries throughout the world."

Community
Email This Article
Comment On This Article

Related Links
Penn State
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Europe Debates Nuclear Energy
Washington (UPI) Jan 11, 2006
European Union countries are starting to rethink their opposition to nuclear energy amid a dispute between Russia and Ukraine over natural gas supplies, but energy analysts say a switch still lacks a green light.







  • Antireflection Coating For Solar Collectors Undergoing Tests In California
  • Microbial Fuel Cell Cleans, Generates Electricity From Domestic Wastewater
  • Nuclear Waste Dumps Need Better Stewardship
  • Radioactive And Toxic Waste Plans Are A Recipe For Disaster

  • Yucca Mountain Site Must Make Use Of Geological Safety Net
  • New Jersey Physicist Uncovers New Information About Plutonium
  • Complex Plant Design Goes Virtual To Save Time And Money
  • Volcanic Hazard At Yucca Mountain Greater Than Previously Thought





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • Hewitt Pledges Support For Aerospace Industry
  • National Consortium Picks Aviation Technology Test Site
  • Wright Flyer Takes To The Sky In Las Vegas
  • Aurora Builds Low-speed Wind Tunnel

  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems
  • Boeing To Build Space-borne Power Generator

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement