Energy News  
ENERGY TECH
Laser-heated nanowires produce micro-scale nuclear fusion
by Staff Writers
Fort Collins CO (SPX) Mar 16, 2018

This is the target chamber (front) and ultra-high intensity laser (back) used in the micro-scale fusion experiment at Colorado State University. Image courtesy Advanced Beam Laboratory/Colorado State University

Nuclear fusion, the process that powers our sun, happens when nuclear reactions between light elements produce heavier ones. It's also happening - at a smaller scale - in a Colorado State University laboratory.

Using a compact but powerful laser to heat arrays of ordered nanowires, CSU scientists and collaborators have demonstrated micro-scale nuclear fusion in the lab. They have achieved record-setting efficiency for the generation of neutrons - chargeless sub-atomic particles resulting from the fusion process.

Their work is detailed in a paper published in Nature Communications, and is led by Jorge Rocca, University Distinguished Professor in electrical and computer engineering and physics. The paper's first author is Alden Curtis, a CSU graduate student.

Laser-driven controlled fusion experiments are typically done at multi-hundred-million-dollar lasers housed in stadium-sized buildings. Such experiments are usually geared toward harnessing fusion for clean energy applications.

In contrast, Rocca's team of students, research scientists and collaborators, work with an ultra fast, high-powered tabletop laser they built from scratch. They use their fast, pulsed laser to irradiate a target of invisible wires and instantly create extremely hot, dense plasmas - with conditions approaching those inside the sun. These plasmas drive fusion reactions, giving off helium and flashes of energetic neutrons.

In their Nature Communications experiment, the team produced a record number of neutrons per unit of laser energy - about 500 times better than experiments that use conventional flat targets from the same material. Their laser's target was an array of nanowires made out of a material called deuterated polyethylene. The material is similar to the widely used polyethylene plastic, but its common hydrogen atoms are substituted by deuterium, a heavier kind of hydrogen atom.

The efforts were supported by intensive computer simulations conducted at the University of Dusseldorf (Germany), and at CSU.

Making fusion neutrons efficiently, at a small scale, could lead to advances in neutron-based imaging, and neutron probes to gain insight on the structure and properties of materials. The results also contribute to understanding interactions of ultra-intense laser light with matter.

Research Report: "Micro-scale fusion in dense relativistic nanowire array plasmas." The research was supported by the Air Force Office of Scientific Research and by Mission Support Test Services, LLC.


Related Links
Colorado State University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Shedding high-power laser light on the plasma density limit
Osaka, Japan (SPX) Feb 26, 2018
The interaction of high-power laser light sources with matter has given rise to numerous applications including; fast ion acceleration; intense X-ray, gamma-ray, positron and neutron generation; and fast-ignition-based laser fusion. These applications require an understanding of energy absorption and momentum transfer from the high-intensity lasers to plasma particles. A group of Japanese researchers led by Osaka University has proposed that substances heated with high-power lasers produce an ultr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Puerto Rico power grid snaps, nearly 1 million in the dark

Grids from Turkmenistan, Afghanistan and Pakistan could be connected

Coal phase-out: Announcing CO2-pricing triggers divestment

State utilities called to pass U.S. tax benefits to consumers

ENERGY TECH
RMIT researchers make battery breakthrough

RMIT researchers make battery breakthrough

New insights could pave the way for self-powered low energy devices

Mapping nanoscale chemical reactions inside batteries in 3-D

ENERGY TECH
German green energy segment Innogy divvied up

First UK wind farm transfers from commercial to community ownership

A huge component of German wind farm has left shore

Windlab exceeds prospectus forecast; scales up operations

ENERGY TECH
India inaugurates mega solar project

Macron pledges 700 million euros for new solar projects

Researchers sew atomic lattices seamlessly together

Solar-to-hydrogen conversion: Nanostructuring increases efficiency of metal-free photocatalysts by factor 11

ENERGY TECH
Framatome confirms serviceability of Le Creusot steam generators

Areva settles nuclear dispute with Finland's TVO

Taiwanese protesters rally for 'nuclear-free homeland'

Saudi Arabia turns to nuclear power to curb oil addiction

ENERGY TECH
Startup scales up CNT membranes to make carbon-zero fuels for less than fossil fuels

Malaysia to press EU on planned palm oil ban in biofuels

Digestive ability of ancient insects could boost biofuel development

New tool tells bioengineers when to build microbial teams

ENERGY TECH
Oil development costs lower, but volume is still a question

Oil prices start Wednesday in the black, but look to falter

Alaska timeline for LNG project 'establishes clarity' for investors

Ecuador looks for investors for newly opened oil, gas territories

ENERGY TECH
Desertification and monsoon climate change linked to shifts in ice volume and sea level

Models show global warming could be limited to 1.5 degrees Celsius

Trump hopefully will change his mind about climate: Bloomberg

Health savings outweigh costs of limiting global warming: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.