Infrared light antenna powers molecular motor by Staff Writers Groningen, Netherlands (SPX) Oct 29, 2020
Light-controlled molecular motors can be used to create functional materials, to provide autonomous motion or in systems that can respond on command, for example, to open drug-containing vesicles. For biological applications, this requires the motors to be driven by low-energy, low-intensity light that penetrates tissue. Chemists at the University of Groningen designed a rotary motor that is efficiently powered by near-infrared light, through adding an antenna to the motor molecule. The design and functionality were presented in the journal Science Advances on 28 October. Ben Feringa, Professor of Organic Chemistry at the University of Groningen, presented the design and construction of the first light-driven unidirectional rotary molecular motor in 1999. In 2016, he was one of three winners of the Nobel Prize in Chemistry, for the design and production of molecular machines. His molecular motors have evolved since, but a major limitation for applications has been that they are powered by ultraviolet light. In many applications, UV light can be harmful to surrounding materials. Attempts to use less energetic near-infrared photons to power these motors have so far been unsuccessful.
Energy Much of this work was carried out by Lukas Pfeifer, a postdoctoral researcher in the Feringa laboratory, who now works at the Swiss Ecole Polytechnique Federale in Lausanne. 'For the system to work, the energy levels of the antenna and the motor had to be closely tuned,' he explains. This meant designing a version of the molecular motor that requires the exact amount of energy that the antenna provides for movement. 'And it also needed a linker that allows the antenna to be attached without interfering in the motor's rotation.'
Simple A complex sequence of events that sets the motor in motion takes place over a very wide range of times, from picoseconds (10-12 s) to minutes. The different time regimes were studied by Pfeifer using NMR and by Nong Hoang, a PhD student in Pshenichnikov's research group, using ultrafast spectroscopy. First, the antenna captures two near-infrared photons. This is followed by the energy transfer that initiates motor motion. Fortunately, the design worked very efficiently.
Dream The next step is to simplify the structure of the motor-antenna complex. That would allow the introduction of additional functionalities. A possible application of the new motor molecule is to function as a trigger to release the contents of a vesicle in a biological system. Pshenichnikov: 'I am really curious to see how the next generation of this system will develop.'
Simple Science Summary Researchers from the University of Groningen now designed an antenna that absorbs energy from near-infrared light. This antenna was attached to the motor molecule, where it transmits the energy directly to the axle that drives motor movement. The result is a motor molecule that is powered by near-infrared light, which brings medical applications one step closer.
Research Report: "Powering rotary molecular motors with low-intensity near-infrared light"
Good vibrations for new energy Adelaide, Australia (SPX) Oct 22, 2020 Imagine a mobile phone charger that doesn't need a wireless or mains power source. Or a pacemaker with inbuilt organic energy sources within the human body. Australian researchers led by Flinders University are picking up the challenge of 'scavenging' invisible power from low-frequency vibrations in the surrounding environment, including wind, air or even contact-separation energy (static electricity). "These so-called triboelectric nanogenerators (or 'TENGs') can be made at low cost in diff ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |