Energy News  
ENERGY TECH
Increasing battery and fuel cell power with quantum computing
by Staff Writers
Stuttgart, Germany (SPX) Feb 19, 2021

With the help of a quantum computer, the researchers study how atoms and molecules interact with the different electrode materials in batteries and fuel cells. "Quantum simulations have the potential to revolutionise computer-aided materials design. We want to use them to optimise the chemical compositions of the electrodes and their microscopic structure," says Horstmann. (File image of an IBM quantum computer)

The German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) is conducting research into new materials for more powerful batteries and fuel cells. DLR scientists are now using a quantum computer to simulate electrochemical processes within energy storage systems. This makes it possible to design the materials used in such a way that the performance and energy density of batteries and fuel cells increase significantly.

The special thing about QuESt (Quantencomputer Materialdesign fur elektrochemische Energiespeicher und -wandler mit innovativen Simulationstechniken; Quantum computer material design for electrochemical energy storage systems and converters with innovative simulation technology) is that it uses quantum computers for a highly application-oriented task in materials research. QuESt thus combines both fundamental and applied research in the field of energy storage.

Quantum chemistry determines power and energy density
Above all else, electromobility requires small, lightweight energy storage systems with high capacities and performance. The material and structure of the electrodes are key factors, as they affect the energy density and the voltage. With optimised materials, it is also possible to prevent decomposition processes and thus prolong the service life of batteries and fuel cells.

When electricity flows through a battery or fuel cell, ions within it travel from one electrode to the other. Ions gain or lose an electron at the surfaces of the electrodes. "The processes can be described with precision with the help of quantum physics. The electrons essentially change their quantum mechanical state. We can simulate these energy states using a quantum computer. This allows us to calculate how much energy is in the electrochemical reactions and how fast these are occurring," says Birger Horstmann, Head of the Theory of Electrochemical Systems Group at the DLR Institute of Engineering Thermodynamics.

In these simulations, the DLR scientists compare the quantum chemical interactions that occur with various novel materials and electrode structures. They are aiming to achieve the highest possible chemical bonding energies for electrons in batteries. In fuel cells, hydrogen and oxygen should react with each other as efficiently as possible.

Targeted material design of battery electrodes with quantum computers
The QuESt project is seeing the DLR Institute of Engineering Thermodynamics, Institute of Quantum Technologies and Institute for Software Technology, together with the Fraunhofer Institute for Mechanics of Materials (Fraunhofer-Institut fur Werkstoffmechanik; IWM), breaking new ground in terms of materials design for energy storage systems.

With the help of a quantum computer, the researchers study how atoms and molecules interact with the different electrode materials in batteries and fuel cells. "Quantum simulations have the potential to revolutionise computer-aided materials design. We want to use them to optimise the chemical compositions of the electrodes and their microscopic structure," says Horstmann.

"A quantum computer enables us to study the quantum-chemical processes occurring at the electrodes of batteries and fuel cells with the utmost precision. We are conducting research to find out the best way of programming our quantum computer for that purpose," says Sabine Wolk of the DLR Institute of Quantum Technologies.

The QuESt project is using the Fraunhofer Society's IBM quantum computer, which is funded by the German Federal State of Baden-Wurttemberg. This uses very small, superconductive coils, referred to as Josephson junctions, as qubits.

Quantum simulation of energy storage systems has applications in other fields
The quantum algorithms devised over the course of the QuESt project also serve as a starting point for future quantum software. The underlying algorithms and steps towards solutions could be carried across to other problems in quantum physics. Findings arising from the simulation of energy storage devices as quantum many-body systems are also set to be applied to other areas of research, such as medicine and the chemical industry.

The Baden-Wurttemberg Ministry of Economic Affairs, Labour and Housing is funding the QuESt project, which was launched in January 2021, with 1.5 million euro over two years. In addition to the DLR institutes and Fraunhofer IWM, the companies Robert Bosch GmbH and Mercedes-Benz Research and Development North America Inc. are also involved in the project as associated partners.

QuESt combines interdisciplinary expertise in quantum technology and battery and fuel cell research at the Helmholtz Institute Ulm (HIU) and the University of Ulm. The HIU was founded in 2011 by the Karlsruhe Institute of Technology (KIT), with the University of Ulm, DLR and the Center for Solar Energy and Hydrogen Research (Zentrum fur Sonnenenergie- und Wasserstoff-Forschung Baden-Wurttemberg; ZSW) as associated partners.


Related Links
DLR Institute of Engineering Thermodynamics
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Novel two-polymer membrane boosts hydrogen fuel cell performance
Incheon, South Korea (SPX) Feb 18, 2021
A considerable portion of the efforts to realize a sustainable world has gone into developing hydrogen fuel cells so that a hydrogen economy can be achieved. Fuel cells have distinctive advantages: high energy-conversion efficiencies (up to 70%) and a clean by-product, water. In the past decade, anion exchange membrane fuel cells (AEMFC), which convert chemical energy to electrical energy via the transport of negatively charged ions (anions) through a membrane, have received attention due to their ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Power outages leave millions shivering in deadly US cold snap

Maersk to launch first carbon neutral ship within two years

Getting to net zero and even negative is surprisingly feasible, and affordable

BlackRock pushes companies to set more ambitious climate targets

ENERGY TECH
Reduced nickel content leads to improved stability and performance for Ceramic fuel cells

Advisory committee releases strategic plan for US fusion, plasma program

New machine learning theory raises questions about nature of science

Novel two-polymer membrane boosts hydrogen fuel cell performance

ENERGY TECH
BP enters UK offshore wind sector

Denmark moves forward on North Sea 'energy island'

$43 bn deal for 'world's biggest' offshore wind farm in South Korea

Magnora enters partnership to establish floating wind company

ENERGY TECH
Bristol-led research will disrupt solar and expedite efforts toward Net-Zero target

Efficiency limits of next-generation hybrid photovoltaic-thermal solar technology

New research helps solar technology become more affordable

Call for Speakers and White Paper for Recharge and Renew 2021 - Oct 28, 2021

ENERGY TECH
Plant as superhero during nuclear power plant accidents

Framatome and Wroclaw University of Technology train the next generation of nuclear professionals

NERC Compliance Teams stay up-to-date on critical industry news with Certrec GRC Data Platforms

GE Hitachi Nuclear Energy announces formation of Canadian SMR Business

ENERGY TECH
Recycling carbon emissions to useful chemicals and reducing global warming

Termite gut microbes could aid biofuel production

New synthetic route for biofuel production

Norwegian fertiliser maker Yara steps into green energy

ENERGY TECH
Venezuela's Maduro vows tough response to Colombian commando unit

US seeks fallback Saudi bases in case of Iran tensions

Producing more sustainable hydrogen with composite polymer dots

WTI crude breaks $60 a barrel on oil supply worries

ENERGY TECH
US VP Harris and Macron talk climate change

Russia's Lavrov holds climate talks with US envoy Kerry

Study: Climate change is making allergy season worse

Climate-driven temperature swings slow economic growth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.