Hybrid material moves next-generation transport fuel cells closer by Staff Writers Hiroshima, Japan (SPX) Apr 26, 2021
Protons are the next big thing when it comes to fuel cell technology. The subatomic exchange produces power on a scale that challenges contemporary solid-state fuel cell technology, used to help power space shuttles. To realize the proton-based technology sooner, an international team of researchers have developed a hybrid material that effectively transports protons at high temperatures and humidity - two major challenges in past attempts. The results were published on April 19 in ACS Applied Materials and Interfaces, a journal of the American Chemical Society. The team, led by the University of Tokyo in Japan, focused on a material called polyoxometalates (POMs), which they previously fabricated into a composite with another polymer and compounds to help provide structural stability. "POMs are attractive as building blocks for the design and synthesis of new materials with desirable properties and functions - they can efficiently transport protons, for example, but only at low temperatures and in low humidity," said paper author Masahiro Sadakane, professor in the Graduate School of Advanced Science and Engineering, Hiroshima University. "Unfortunately, a huge problem remained to be solved is that our composite decomposed at higher temperatures and humidity." To solve this problem, the researchers investigated how to better tune the composite by encapsulating positively charged ions in the material's internal cavities. Positive ions, known as cations, help balance negatively charged ions, known as anions, to stabilize conductivity in a material. They settled on incorporating europium, a metallic element that is solid at room temperature, into the material. Europium is particularly attractive to water molecules, which brings external oxygen into the material. Protons move through the system by attaching to the oxygen. The more oxygen, the more proton-conductive the process is. "Our goal is to produce stable high proton-conductive materials," said paper author Sayaka Uchida, associate professor in the Department of Basic Science, School of Arts and Sciences, The University of Tokyo. "Through fine control of the components, we produced such a material." The material continued to demonstrate high proton conductivity at temperatures of 368 degrees Kelvin (202.73 degrees Fahrenheit) and 50% humidity. The researchers plan to increase the stability and proton conductivity further. "We plan to increase the stability and proton conductivity so that this material can be used as an electrolyte in fuel cells, enhancing their performance," Sadakane said. "This work could provide guidance for the design of solid-state proton conductors."
NASA seeks to create a better battery with SABERS Cleveland OH (SPX) Apr 08, 2021 Dealing with battery issues on our phones, tablets, or laptops can be frustrating. Although batteries are everywhere in everyday life, many still suffer breakdowns and failures. The minor inconvenience of needing to charge them more often could even turn into costly repairs or buying a new device altogether. Batteries in larger electronics, like hoverboards or cars, can even catch fire. Now, with increasing emphasis on aviation sustainability, interest in using batteries to partially or fully powe ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |