Energy News  
ENERGY TECH
Group works toward devising topological superconductor
by Staff Writers
Ithaca NY (SPX) Apr 12, 2017


This is a schematic of an interpocket paired state, one of two topological superconducting states proposed in the latest work from the lab of Eun-Ah Kim, associate professor of physics at Cornell University. The material used is a monolayer transition metal dichalcogenide. Image courtesy Eun-Ah Kim, Cornell University.

The experimental realization of ultrathin graphene - which earned two scientists from Cambridge the Nobel Prize in physics in 2010 - has ushered in a new age in materials research.

What started with graphene has evolved to include numerous related single-atom-thick materials, which have unusual properties due to their ultra-thinness. Among them are transition metal dichalcogenides (TMDs), materials that offer several key features not available in graphene and are emerging as next-generation semiconductors.

TMDs could realize topological superconductivity and thus provide a platform for quantum computing - the ultimate goal of a Cornell research group led by Eun-Ah Kim, associate professor of physics.

"Our proposal is very realistic - that's why it's exciting," Kim said of her group's research. "We have a theoretical strategy to materialize a topological superconductor ... and that will be a step toward building a quantum computer. The history of superconductivity over the last 100 years has been led by accidental discoveries. We have a proposal that's sitting on firm principles.

"Instead of hoping for a new material that has the properties you want," she said, "let's go after it with insight and design principle."

Yi-Ting Hsu, a doctoral student in the Kim Group, is lead author of "Topological superconductivity in monolayer transition metal dichalcogenides," published April 11 in Nature Communications. Other team members include Kim Group alumni Mark Fischer, now at ETH Zurich in Switzerland, and Abolhassan Vaezi, now at Stanford University.

The group's proposal: The TMDs' unusual properties favor two topological superconducting states, which, if experimentally confirmed, will open up possibilities for manipulating topological superconductors at temperatures near absolute zero.

Kim identified hole-doped (positive charge-enhanced) single-layer TMDs as a promising candidate for topological superconductivity, based on the known special locking between spin state and kinetic energy of electrons (spin-valley locking) of single-layer TMDs, as well as the recent observations of superconductivity in electron-doped (negative charge-enhanced) single-layer TMDs.

The group's goal is a superconductor that operates at around 1 degree Kelvin (approximately minus 457 Fahrenheit), that could be cooled with liquid helium sufficiently to maintain quantum computing potential in a superconducting state.

Theoretically, housing a quantum computer powerful enough to justify the power needed to keep the superconductor at 1 degree Kelvin is not out of the question, Kim said. In fact, IBM already has a 7-qubit (quantum bit) computer, which operates at less than 1 Kelvin, available to the public through its IBM Quantum Experience.

A quantum computer with approximately six times more qubits would fundamentally change computing, Kim said.

"If you get to 40 qubits, that computing power will exceed any classical computers out there," she said. "And to house a 40-qubit [quantum computer] in cryogenic temperature is not that big a deal. It will be a revolution."

Kim and her group are working with Debdeep Jena and Grace Xing of electrical and computer engineering, and Katja Nowack of physics, through an interdisciplinary research group seed grant from the Cornell Center for Materials Research. Each group brings researchers from different departments together, with support from both the university and the National Science Foundation's Materials Research Science and Engineering Centers program.

"We're combining the engineering expertise of DJ and Grace, and expertise Katja has in mesoscopic systems and superconductors," Kim said. "It requires different expertise to come together to pursue this, and CCMR allows that."

Research paper

ENERGY TECH
Controlling electron spin for efficient water splitting
Rehovot, Israel (SPX) Apr 12, 2017
Water is made of oxygen and hydrogen, and splitting water molecules to produce hydrogen for fuel is a promising path for alternative energy. One of the main obstacles to making hydrogen production a reality is that current methods of water splitting result in hydrogen peroxide also being formed: This affects both the efficiency of the reaction and the stability of the production process. I ... read more

Related Links
Cornell University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
U.S. emissions generally lower last year

World Bank urges more investment for developing global electricity

US states begin legal action on Trump energy delay

Program to be axed saves energy in LA buildings

ENERGY TECH
Art of paper-cutting inspires self-charging paper device

Making batteries from waste glass bottles

New battery coating could improve smart phones and electric vehicles

Group works toward devising topological superconductor

ENERGY TECH
Oklahoma to end tax credits for wind energy

German power company examining new wind energy options.

Canada sees emerging role for wind energy

U.N. says low-carbon economy not a "pipe dream"

ENERGY TECH
Center for Sustainable Energy Partners with EnergySage to Offer an Online Multifamily Solar Marketplace

Powerpedia Forms Nonprofit to Provide Free Solar Systems to Orphanages Throughout Baja Mexico and Beyond

Mechanism behind the electric charges generated by photosynthesis

Swedish leading solar energy technology provider Midsummer offers complete BIPV metal roof systems

ENERGY TECH
AREVA NP Signs Contract for Outage Services at Farley Nuclear Generating Station

AREVA and KAZATOMPROM sign a strategic agreement

S.Africa to re-think nuclear deal after junk status : ANC

France enshrines decision to close oldest nuclear plant

ENERGY TECH
Degradable electronic components created from corn starch

Towards more efficient biofuels by making oil from algae

Algal residue - an alternative carbon resource for pharmaceuticals and polyesters

For Palestinian family, an udder-ly unique power source

ENERGY TECH
Hazardous chemicals go unregulated in routine oil and gas operations

Chinese investors launch Oman industrial project

Shale gas threat to forests can be eased by consolidating infrastructure

Canada pipeline development facing headwinds

ENERGY TECH
Models, observations not so far apart on planet's response to greenhouse gas emissions

Drought, conflict and famine in Africa

How ENSO and Atlantic ADO impact East Asian winter monsoon

Plants have been helping to offset climate change, but now it's up to us









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.