Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Getting a charge out of water droplets
by Staff Writers
Cambridge MA (SPX) Jul 14, 2014


File image.

Last year, MIT researchers discovered that when water droplets spontaneously jump away from superhydrophobic surfaces during condensation, they can gain electric charge in the process. Now, the same team has demonstrated that this process can generate small amounts of electricity that might be used to power electronic devices.

The new findings, by postdoc Nenad Miljkovic, associate professor of mechanical engineering Evelyn Wang, and two others, are published in the journal Applied Physics Letters.

This approach could lead to devices to charge cellphones or other electronics using just the humidity in the air. As a side benefit, the system could also produce clean water.

The device itself could be simple, Miljkovic says, consisting of a series of interleaved flat metal plates. Although his initial tests involved copper plates, he says any conductive metal would do, including cheaper aluminum.

In initial testing, the amount of power produced was vanishingly small - just 15 picowatts, or trillionths of a watt, per square centimeter of metal plate. But Miljkovic says the process could easily be tuned to achieve at least 1 microwatt, or millionth of a watt, per square centimeter.

Such output would be comparable to that of other systems that have been proposed for harvesting waste heat, vibrations, or other sources of ambient energy, and represents an amount that could be sufficient to provide useful power for electronic devices in some remote locations.

For example, Miljkovic has calculated that at 1 microwatt per square centimeter, a cube measuring about 50 centimeters on a side - about the size of a typical camping cooler - could be sufficient to fully charge a cellphone in about 12 hours. While that may seem slow, he says, people in remote areas may have few alternatives.

There are some constraints: Because the process relies on condensation, it requires a humid environment, as well as a source of temperatures colder than the surrounding air, such as a cave or river.

The system is based on Miljkovic and Wang's 2013 finding - in attempting to develop an improved heat-transfer surface to be used as a condenser in applications such as power plants - that droplets on a superhydrophobic surface convert surface energy to kinetic energy as they merge to form larger droplets.

This sometimes causes the droplets to spontaneously jump away, enhancing heat transfer by 30 percent relative to other techniques. They later found that in that process, the jumping droplets gain a small electric charge - meaning that the jumping, and the accompanying transfer of heat, could be enhanced by a nearby metal plate whose opposite charge is attractive to the droplets.

Now the researchers have shown that the same process can be used to generate power, simply by giving the second plate a hydrophilic surface. As the droplets jump, they carry charge from one plate to the other; if the two plates are connected through an external circuit, that charge difference can be harnessed to provide power.

In a practical device, two arrays of metal plates, like fins on a radiator, would be interleaved, so that they are very close but not touching. The system would operate passively, with no moving parts.

For powering remote, automated environmental sensors, even a tiny amount of energy might be sufficient; any location where dew forms would be capable of producing power for a few hours in the morning, Miljkovic says. "Water will condense out from the atmosphere, it happens naturally," he says.

"The atmosphere is a huge source of power, and all you need is a temperature difference between the air and the device," he adds - allowing the device to produce condensation, just as water condenses from warm, humid air on the outside of a cold glass.

.


Related Links
Massachusetts Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Insights from nature for more efficient water splitting
Yokohama, Japan (SPX) Jul 08, 2014
Water splitting is one of the critical reactions that sustain life on earth, and could be a key to the creation of future fuels. It is a key in the process of photosynthesis, through which plants produce glucose and oxygen from water and carbon dioxide, using sunlight as energy. However, there are still significant mysteries about the process. Nature's own water-splitting catalysts, which ... read more


ENERGY TECH
Blow for Australia government as carbon tax repeal fails

Upton wants policies in place to exploit energy leadership

Green planning needed to maintain city buildings

GE taps China CEO to lead Alstom merger

ENERGY TECH
Silicon sponge improves lithium-ion battery performance

Using Sand to Improve Battery Performance

RUB chemists develop novel catalyst with two functions

Britain wins carbon capture funding from EU

ENERGY TECH
SeaRoc makes first maintenance visit to Dogger Bank met masts

EON and GE Partner To Build Texas Wind Farm

U.S., German companies to operate Texas Panhandle wind farm

Great progress on wind installations, Germany's RWE says

ENERGY TECH
Trina Solar to Supply 200MW of PV Modules to Zonergy

Record levels of solar ultraviolet measured in South America

Solar power for facility at Guantanamo Bay Naval Base

Solar energy gets a boost

ENERGY TECH
Sophisticated radiation detector designed for broad public use

Japan city launches legal bid to halt reactor build

Westinghouse Extends New-plant Market with Specialized Seismic Option

Single Optical Fiber Combines 100s Of Sensors To Monitor Harsh Environments

ENERGY TECH
Hunger for vegetable oil means trouble for Africa's great apes

Microbe sniffer could point the way to next-gen bio-refining

The JBEI GT Collection: A New Resource for Advanced Biofuels Research

A Win-Win-Win Solution for Biofuel, Climate, and Biodiversity

ENERGY TECH
Chinese moon rover designer shooting for Mars

Yutu designer's bittersweet

Are China's Astronauts Moonbound

Chinese scientists prepare for lunar base life support system

ENERGY TECH
IPCC must consider alternate policy views

Putting a price tag on the 2 degree climate target

Kudzu can release soil carbon, accelerate global warming

More carbohydrates make trees more resistant to drought




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.