Energy News  
From Farm Waste To Fuel Tanks

In addition to efforts to commercialize the technology, the researchers are now focusing on the next generation briquette, one that will store more natural gas and cost less to produce. Pfeifer believes this next generation of briquette might even hold promise for storing hydrogen.
by Staff Writers
Arlington VA (SPX) Feb 23, 2007
Using corncob waste as a starting material, researchers have created carbon briquettes with complex nanopores capable of storing natural gas at an unprecedented density of 180 times their own volume and at one seventh the pressure of conventional natural gas tanks. The breakthrough, announced today in Kansas City, Mo., is a significant step forward in the nationwide effort to fit more automobiles to run on methane, an abundant fuel that is domestically produced and cleaner burning than gasoline.

Supported by the National Science Foundation (NSF) Partnership for Innovation program, researchers at the University of Missouri-Columbia (MU) and Midwest Research Institute (MRI) in Kansas City developed the technology. The technology has been incorporated into a test bed installed on a pickup truck used regularly by the Kansas City Office of Environmental Quality.

The briquettes are the first technology to meet the 180 to 1 storage to volume target set by the U.S. Department of Energy in 2000, a long-term goal of principal project leader Peter Pfeifer of MU.

"We are very excited about this breakthrough because it may lead to a flat and compact tank that would fit under the floor of a passenger car, similar to current gasoline tanks," said Pfeifer. "Such a technology would make natural gas a widely attractive alternative fuel for everyone."

According to Pfeifer, the absence of such a flatbed tank has been the principal reason why natural gas, which costs significantly less than gasoline and diesel and burns more cleanly, is not yet widely used as a fuel for vehicles.

Standard natural gas storage systems use high-pressure natural gas that has been compressed to a pressure of 3600 pounds per square inch and bulky tanks that can take up the space of an entire car trunk. The carbon briquettes contain networks of pores and channels that can hold methane at a high density without the cost of extreme compression, ultimately storing the fuel at a pressure of only 500 pounds per square inch, the pressure found in natural gas pipelines.

The low pressure of 500 pounds per square inch is central for crafting the tank into any desired shape, so ultimately, fuel storage tanks could be thin-walled, slim, rectangular structures affixed to the underside of the car, not taking up room in the vehicle.

Pfeifer and his colleagues at MU and MRI discovered that that fractal pore spaces (spaces created by repetition of similar patterns at different scales) are remarkably efficient at storing natural gas.

"Our project is the first time a carbon storage material has been made from corncobs, an abundantly available waste product in the Midwest," said Pfeifer. "The carbon briquettes are made from the cobs that remain after the kernels have been harvested. The state of Missouri alone could supply the raw material for more than 10 million cars per year. It would be a unique opportunity to bring corn to the market for alternative fuels--corn kernels for ethanol production, and corncob for natural gas tanks."

The test pickup truck, part of a fleet of more than 200 natural gas vehicles operated by Kansas City, has been in use since mid-October and the researchers are monitoring the technology's performance, from mileage data to measurements of the stability of the briquettes.

In addition to efforts to commercialize the technology, the researchers are now focusing on the next generation briquette, one that will store more natural gas and cost less to produce. Pfeifer believes this next generation of briquette might even hold promise for storing hydrogen.

Community
Email This Article
Comment On This Article

Related Links
National Science Foundation
Powering The World in the 21st Century at Energy-Daily.com
Our Polluted World and Cleaning It Up
China News From SinoDaily.com
Global Trade News
The Economy
All About Solar Energy at SolarDaily.com
Civil Nuclear Energy Science, Technology and News
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Strain Has Major Effect On High-Temp Superconductors
Boulder CO (SPX) Feb 22, 2007
Just a little mechanical strain can cause a large drop in the maximum current carried by high-temperature superconductors, according to novel measurements carried out by the National Institute of Standards and Technology (NIST). The effect, which is reversible, adds a new dimension to designing superconducting systems-particularly for electric power applications-and it also provides a new tool that will help scientists probe the fundamental mechanism behind why these materials carry current with no resistance.







  • Strain Has Major Effect On High-Temp Superconductors
  • Effective Carbon Control Policy Can Improve Competition Climate And Power Costs
  • From Farm Waste To Fuel Tanks
  • London, Venezuela Sign Oil-For-Environment Expertise Deal

  • Czech Government Rejects Australian Bid For Uranium Mine
  • Russia, RSA Discuss Nuclear Cooperation Program - Agency Head
  • Swedish nuclear reactor shut down
  • Britain Forced To Rethink Nuclear Power Plans

  • Global Assimilation Of Ionospheric Measurements Model Goes Operational
  • Airborne Dust Causes Ripple Effect on Climate Far Away
  • U.S. wood-fired boilers cause concern
  • Climate Change Affecting Outermost Atmosphere Of Earth

  • Poland Threatens Fragile Forest Despite EU Warning
  • Malawi Ropes In Army To Save Its Forests
  • Afghan Women Grow Trees To Lift Their Own Lives
  • US Hails Borneo Rainforest Deal

  • European Ministers Uphold Hungary's Right To Ban GMO Crop
  • Ban Subsidies To Deep-Sea Fishing Bandits
  • Roses Are Red But Chocolate Can Be Green
  • Architectural Plan Revealed Of Doomsday Arctic Seed Vault

  • Bulging Bumper Could Speed Journey To Computerised Carriageways
  • Posh Areas Cough Up As London Expands Traffic Toll Zone
  • Robot-driven cars on roads by 2030
  • Talking Urinals Discourage Drunken Driving

  • Can UABC Take Russian Aircraft-Makers Out Of Spin
  • Superjet To Be Tested For Strength
  • Anger As Britons Face Air Tax Hike
  • Bats In Flight Reveal Unexpected Aerodynamics

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement