Energy News  
ENERGY TECH
First hydride superionic conductor developed, implications for sustainable energy
by Staff Writers
Tokyo, Japan (SPX) Jan 27, 2022

stock image only

Superionic conductors promise clean, renewable energy - at the right temperatures. These conductors, used as solid electrolytes in batteries and fuel cells, comprise solid materials in which ions move as fast as in liquids. One such superionic conductor is hydrogen, a clean energy source, which diffuses rapidly at low temperatures, but conductivity drops in the intermediate temperature range of 200-400C, where chemical and energy conversions are more easily facilitated.

To better expedite hydrogen conductivity in the intermediate range, an international research team developed the first superionic conductor based on a negatively charged hydrogen atom, called a hydride ion.

The team published their results, which produced superior conductivity in the target range, on Jan. 13 in Nature Materials.

"Hydrogen transport in solids, applied in electrochemical devices, such as fuel cells and electrolysis cells, is key towards sustainable energy societies," said paper author Genki Kobayashi, associate professor at the Institute for Molecular Science of the National Institutes of Natural Sciences in Japan.

"The intermediate temperature range is ideal for fuel cells and electrochemical reactors because it enhances reactivity and eliminates or reduces rare metal catalysts. It is also the temperature at which industrial waste heat is released, making it a critical temperature range for waste heat utilization. However, there have been no solid electrolytes that can quickly diffuse hydrogen in this temperature range."

Due to its structure in relation to its weight, the hydride ion possesses a low charge density, which weakens chemical bonds. As such, when hydride ions exist in solids, they diffuse in the material. This basic characteristic is favorable for fast ion conduction in general, but especially in solids, according to Kobayashi.

To achieve the hydride superionic conductivity, the researchers synthesized the oxyhydride, Ba1.75LiH2.7O0.9 (BLHO), which has a layered structure of Barium, Lithium, Hydrogen and Oxygen. The key, Kobayashi said, was to form the conduction layer by ordering hydride ions with negatively charged oxygen ions to introduce highly concentrated vacancies.

"BLHO has a high conductivity and low activation energy, achieved through a phase transition," Kobayashi said, explaining that these properties only appear when BLHO is heated to a sufficiently high threshold temperature at which this phase transition occurs.

"Once it reaches that transition state, the conductivity of BLHO remains high and essentially independent of temperature in the intermediate range of 300-350C. Such a remarkable conductivity behavior at intermediate temperatures is anticipated to be significant step forward for energy and chemical conversion devices."

While BLHO's targeted conductivity remains high above 200C, the low end of the intermediate temperature range, Kobayashi cautioned that more work is needed to stabilize the conductivity at lower temperatures.

"By stabilizing the high temperature phase of BLHO, we aim to develop hydride ion conductors that can operate as solid electrolytes from room temperature to intermediate temperature," Kobayashi said. For their goal, the researchers hope to create novel energy storage devices and electrochemical reactors that utilize the charge flexibility of hydrogen.

Research Report: "Hydride-ion-conducting K2NiF4-type Ba-Li oxyhydride solid electrolyte"


Related Links
National Institutes of Natural Sciences
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
How a smart electric grid will power our future
Richland WA (SPX) Jan 26, 2022
A novel plan that offers partnership in keeping the United States electric grid stable and reliable could be a win-win for consumers and utility operators. The largest ever simulation of its kind, modeled on the Texas power grid, concluded that consumers stand to save about 15 percent on their annual electric bill by partnering with utilities. In this system, consumers would coordinate with their electric utility operator to dynamically control big energy users, like heat pumps, water heaters and ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Risk appetite of banks for small merchant renewable energy plants remains low

EU ministers mull climate policy, carbon border tax

EU nations quarrel over whether nuclear, gas are 'green'

World risks more years of high energy prices, emissions: IEA

ENERGY TECH
Researchers achieve burning plasma regime for first time in lab

First hydride superionic conductor developed, implications for sustainable energy

How a smart electric grid will power our future

Form fit: Device wraps around hot surfaces, turns wasted heat to electricity

ENERGY TECH
Owl wing design reduces aircraft, wind turbine noise pollution

Earth, wind and reindeer: Lapland herders see red over turbines

Earth, wind and reindeer: Lapland herders see red over turbines

'Ocean battery' targets renewable energy dilemma

ENERGY TECH
Bridging atmospheric scientists and solar engineers to reach carbon neutrality

Solvent additives improve efficiency of polymer solar cells

Scientists enhance energy storage capacity of graphene supercapacitors via solar heating

New technique boosts efficiency, sustainability of large-scale perovskite solar cells

ENERGY TECH
Japan to help with Bill Gates' next-gen nuclear power project

Sweden approves plan to bury nuclear waste

The Future of SMRs and ARs: Off-Grid Market Applications

Britain injects 100m pounds into Sizewell C nuclear project

ENERGY TECH
LSU chemists unlock the key to improving biofuel and biomaterial production

Getting hydrogen out of banana peels

Scientists build bioreactors and engineer bacteria to advance biofuel research

Creating sustainable material from waste

ENERGY TECH
Los Angeles set to ban oil drilling in city

Judge cancels major US oil and gas exploration sale

Qatar looks to profit from Europe gas fears over Ukraine

Greenpeace says abandoned Yemen oil tanker a 'grave threat'

ENERGY TECH
Tied for 6th warmest year as 2021 shows continued trend

Last nine years all among 10 hottest-ever, says US

Last 7 years 'warmest on record' globally: EU

Six million need aid in drought-hit parts of Ethiopia: UN









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.