Energy News  
ENERGY TECH
Extending the life of low-cost, compact, lightweight batteries
by David L. Chandler for MIT News
Boston MA (SPX) Nov 09, 2018

Researchers demonstrating the ability of aluminum to repel oil underwater.

Metal-air batteries are one of the lightest and most compact types of batteries available, but they can have a major limitation: When not in use, they degrade quickly, as corrosion eats away at their metal electrodes. Now, MIT researchers have found a way to substantially reduce that corrosion, making it possible for such batteries to have much longer shelf lives.

While typical rechargeable lithium-ion batteries only lose about 5 percent of their charge after a month of storage, they are too costly, bulky, or heavy for many applications. Primary (nonrechargeable) aluminum-air batteries are much less expensive and more compact and lightweight, but they can lose 80 percent of their charge a month.

The MIT design overcomes the problem of corrosion in aluminum-air batteries by introducing an oil barrier between the aluminum electrode and the electrolyte - the fluid between the two battery electrodes that eats away at the aluminum when the battery is on standby. The oil is rapidly pumped away and replaced with electrolyte as soon as the battery is used. As a result, the energy loss is cut to just 0.02 percent a month - more than a thousandfold improvement.

The findings are reported in the journal Science by former MIT graduate student Brandon J. Hopkins '18, W.M. Keck Professor of Energy Yang Shao-Horn, and professor of mechanical engineering Douglas P. Hart.

While several other methods have been used to extend the shelf life of metal-air batteries (which can use other metals such as sodium, lithium, magnesium, zinc, or iron), these methods can sacrifice performance Hopkins says. Most of the other approaches involve replacing the electrolyte with a different, less corrosive chemical formulation, but these alternatives drastically reduce the battery power.

Other methods involve pumping the liquid electrolyte out during storage and back in before use. These methods still enable significant corrosion and can clog plumbing systems in the battery pack. Because aluminum is hydrophilic (water-attracting) even after electrolyte is drained out of the pack, the remaining electrolyte will cling to the aluminum electrode surfaces. "The batteries have complex structures, so there are many corners for electrolyte to get caught in," which results in continued corrosion, Hopkins explains.

A key to the new system is a thin membrane placed between the battery electrodes. When the battery is in use, both sides of the membrane are filled with a liquid electrolyte, but when the battery is put on standby, oil is pumped into the side closest to the aluminum electrode, which protects the aluminum surface from the electrolyte on the other side of the membrane.

The new battery system also takes advantage of a property of aluminum called "underwater oleophobicity" - that is, when aluminum is immersed in water, it repels oil from its surface. As a result, when the battery is reactivated and electrolyte is pumped back in, the electrolyte easily displaces the oil from the aluminum surface, which restores the power capabilities of the battery. Ironically, the MIT method of corrosion suppression exploits the same property of aluminum that promotes corrosion in conventional systems.

The result is an aluminum-air prototype with a much longer shelf life than that of conventional aluminum-air batteries. The researchers showed that when the battery was repeatedly used and then put on standby for one to two days, the MIT design lasted 24 days, while the conventional design lasted for only three. Even when oil and a pumping system are included in scaled-up primary aluminum-air battery packs, they are still five times lighter and twice as compact as rechargeable lithium-ion battery packs for electric vehicles, the researchers report.

Hart explains that aluminum, besides being very inexpensive, is one of the "highest chemical energy-density storage materials we know of" - that is, it is able to store and deliver more energy per pound than almost anything else, with only bromines, which are expensive and hazardous, being comparable. He says many experts think aluminum-air batteries may be the only viable replacement for lithium-ion batteries and for gasoline in cars.

Aluminum-air batteries have been used as range extenders for electric vehicles to supplement built-in rechargeable batteries, to add many extra miles of driving when the built-in battery runs out. They are also sometimes used as power sources in remote locations or for some underwater vehicles. But while such batteries can be stored for long periods as long as they are unused, as soon as they are turned on for the first time, they start to degrade rapidly.

Such applications could greatly benefit from this new system, Hart explains, because with the existing versions, "you can't really shut it off. You can flush it and delay the process, but you can't really shut it off." However, if the new system were used, for example, as a range extender in a car, "you could use it and then pull into your driveway and park it for a month, and then come back and still expect it to have a usable battery. ... I really think this is a game-changer in terms of the use of these batteries."

With the greater shelf life that could be afforded by this new system, the use of aluminum-air batteries could "extend beyond current niche applications," says Hopkins. The team has already filed for patents on the process.


Related Links
Massachusetts Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
E-magy Silicon enhances Lithium Ion Batteries, targeting for 50% additional capacity
Broek op Langedijk, Netherlands (SPX) Nov 05, 2018
RGS has announced the launch of its E-magy nano-porous silicon to improve lithium-ion batteries, mostly for the electric vehicle market. This special silicon is used in the anode of Li-ion batteries to enhance their capacity. E-magy can increase the capacity of Li-ion battery anodes to meet industry targets by up to fifty percent (50%) additional capacity. This translates into electric vehicle ranges of well above 500 km without adding more batteries. To provide its customers with larger quantitie ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Spain's Ibedrola sells hydro, gas-powered assets in U.K. for $929M

How will climate change stress the power grid

ENERGY TECH
Batteryless smart devices closer to reality

Shortening the rare-earth supply chain via recycling

E-magy Silicon enhances Lithium Ion Batteries, targeting for 50% additional capacity

New quantum criticality discovered in superconductivity

ENERGY TECH
DNV GL successfully completed technical due diligence for 25 MW Windfloat Atlantic floating wind project

Wind farm 'predator' effect hits ecosystems: study

Coal-dependent Poland shifts on wind ahead of climate meeting

Extreme weather forcing renewable operators to strengthen project economics

ENERGY TECH
Powered by windows: enhanced power factor in transparent thermoelectric nanowire materials

New efficiency record set for perovskite LEDs

Puerto Rico works to tap renewable energy as part of better storm prep

Urban Solar Releases Streamline Solar Series - Solar-Powered Area Lighting Systems

ENERGY TECH
Toshiba slashes 7,000 jobs, pulls out of British nuke plant

Levitating particles could lift nuclear detective work

Framatome develops and implements high performance repair at Savannah River waste storage site

Saudi Arabia to build first nuclear research reactor

ENERGY TECH
A bionic mushroom that generates electricity

Graphene takes a step towards renewable fuel

Experimental plasma generator offers path forward for better use of landfill gas as energy

Alcohols as carbon radical precursors

ENERGY TECH
Sisi pledges Egypt's military support if Gulf 'threatened'

U.S. service stations see lowest gas prices since April

Crude oil prices mixed as bearishness drags on

Crude oil prices turn lower in volatile mid-morning trading

ENERGY TECH
What happened in the past when the climate changed?

Perilous times for Australia wildlife amid severe drought

Perilous times for Australia wildlife amid severe drought

'Big dry' drags on as Australia sets up drought-proof fund









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.