Exotic superconductors: The secret that wasn't there by Staff Writers Vienna, Austria (SPX) Jun 23, 2021
A single measurement result is not a proof - this has been shown again and again in science. We can only really rely on a research result when it has been measured several times, preferably by different research teams, in slightly different ways. In this way, errors can usually be detected sooner or later. However, a new study by Prof. Andrej Pustogow from the Institute of Solid State Physics at TU Wien together with other international research teams shows that this can sometimes take quite a long time. The investigation of strontium ruthenate, a material that plays an important role in unconventional superconductivity, has now disproved an experiment that gained fame in the 1990s: it was believed that a novel form of superconductivity had been discovered. As it now turns out, however, the material behaves very similarly to other well-known high-temperature superconductors. Nevertheless, this is an important step forward for research.
Two particles with coupled spin In a normal metal, electric current consists of individual electrons that collide with each other and with the metal atoms. In a superconductor, the electrons move in pairs. "This changes the situation dramatically," explains Andrej Pustogow. "It's similar to the difference between a crowd in a busy shopping street and the seemingly effortless motion of a dancing couple on the dance floor." When electrons are bound in Cooper pairs, they do not lose energy through scattering and move through the material without any disturbance. The crucial question is: Which conditions lead to this formation of Cooper pairs? "From a quantum physics point of view, the important thing is the spin of these two electrons," says Andrej Pustogow. The spin is the magnetic moment of an electron and can point either 'up' or 'down'. In Cooper pairs, however, a coupling occurs: in a 'singlet' state, the spin of one electron points upwards and that of the other electron points downwards. The magnetic moments cancel each other out and the total spin of the pair is always zero. However, this rule, which almost all superconductors follow, seemed to be broken by the Cooper pairs in strontium ruthenate (Sr2RuO4). In 1998, results were published that indicated Cooper pairs in which the spins of both electrons point in the same direction (then it is a so-called "spin triplet"). "This would enable completely new applications," explains Andrej Pustogow. "Such triplet Cooper pairs would then no longer have a total spin of zero. This would allow them to be manipulated with magnetic fields and used to transport information without loss, which would be interesting for spintronics and possible quantum computers." This caused quite a stir, not least because strontium ruthenate was also considered a particularly important material for superconductivity research for other reasons: its crystal structure is identical to that of cuprates, which exhibit high-temperature superconductivity. While the latter are deliberately doped with "impurities" to make superconductivity possible, Sr2RuO4 is already superconducting in its pure form.
New measurement, new result However, Andrej Pustogow does not find this disappointing: "It is a result that brings our understanding of high-temperature superconductivity in these materials another step forward. The finding that strontium ruthenate shows similar behaviour to cuprates means two things: On the one hand, it shows that we are not dealing with an exotic, new phenomenon, and on the other hand it also means that we have a new material at our disposal, in which we can investigate already known phenomena." Ultra-pure strontium ruthenate is better suited for this than previously known materials. It offers a much cleaner test field than cuprates. In addition, one also learns something about the reliability of old, generally accepted publications: "Actually, one might think that results in solid-state physics can hardly be wrong," says Pustogow. "While in medicine you might have to be satisfied with a few laboratory mice or a sample of a thousand test subjects, we examine billions of billions (about 10 to the power of 19) electrons in a single crystal. This increases the reliability of our results. But that does not mean that every result is completely correct. As everywhere in science, reproducing previous results is indispensable in our field - and so is falsifying them."
Electric heat pumps use much less energy than furnaces, and can cool houses too Dayton OH (SPX) Jun 15, 2021 To help curb climate change, President Biden has set a goal of lowering U.S. greenhouse gas emissions 50%-52% below 2005 levels by 2030. Meeting this target will require rapidly converting as many fossil fuel-powered activities to electricity as possible, and then generating that electricity from low-carbon and carbon-free sources such as wind, solar, hydropower and nuclear energy. The buildings that people live and work in consume substantial amounts of energy. In 2019, commercial and residential ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |