Energy News  
ENERGY TECH
Evan Leppink: Seeking a way to better stabilize the fusion environment
by Paul Rivenberg | Plasma Science and Fusion Center
Boston MA (SPX) Jun 16, 2022

A worker inside the DIII-D vessel,

"Fusion energy was always one of those kind-of sci-fi technologies that you read about," says nuclear science and engineering PhD candidate Evan Leppink. He's recalling the time before fusion became a part of his daily hands-on experience at MIT's Plasma Science and Fusion Center, where he is studying a unique way to drive current in a tokamak plasma using radiofrequency (RF) waves.

Now, an award from the U.S. Department of Energy's (DOE) Office of Science Graduate Student Research (SCGSR) Program will support his work with a 12-month residency at the DIII-D National Fusion Facility in San Diego, California.

Like all tokamaks, DIII-D generates hot plasma inside a doughnut-shaped vacuum chamber wrapped with magnets. Because plasma will follow magnetic field lines, tokamaks are able to contain the turbulent plasma fuel as it gets hotter and denser, keeping it away from the edges of the chamber where it could damage the wall materials. A key part of the tokamak concept is that part of the magnetic field is created by electrical currents in the plasma itself, which helps to confine and stabilize the configuration. Researchers often launch high-power RF waves into tokamaks to drive that current.

Leppink will be contributing to research, led by his MIT advisor Steve Wukitch, that pursues launching RF waves in DIII-D using a unique compact antenna placed on the tokamak center column. Typically, antennas are placed inside the tokamak on the outer edge of the doughnut, farthest from the central hole (or column), primarily because access and installation are easier there. This is known as the "low-field side," because the magnetic field is lower there than at the central column, the "high-field side."

This MIT-led experiment, for the first time, will mount an antenna on the high-field side. There is some theoretical evidence that placing the wave launcher there could improve power penetration and current drive efficiency. And because the plasma environment is less harsh on this side, the antenna will survive longer, a factor important for any future power-producing tokamak.

Leppink's work on DIII-D focuses specifically on measuring the density of plasmas generated in the tokamak, for which he developed a "reflectometer." This small antenna launches microwaves into the plasma, which reflect back to the antenna to be measured. The time that it takes for these microwaves to traverse the plasma provides information about the plasma density, allowing researchers to build up detailed density profiles, data critical for injecting RF power into the plasma.

"Research shows that when we try to inject these waves into the plasma to drive the current, they can lose power as they travel through the edge region of the tokamak, and can even have problems entering the core of the plasma, where we would most like to direct them," says Leppink. "My diagnostic will measure that edge region on the high-field side near the launcher in great detail, which provides us a way to directly verify calculations or compare actual results with simulation results."

Although focused on his own research, Leppink has excelled at priming other students for success in their studies and research. In 2021 he received the NSE Outstanding Teaching Assistant and Mentorship Award.

"The highlights of TA'ing for me were the times when I could watch students go from struggling with a difficult topic to fully understanding it, often with just a nudge in the right direction and then allowing them to follow their own intuition the rest of the way," he says.

The right direction for Leppink points toward San Diego and RF current drive experiments on DIII-D. He is grateful for the support from the SCGSR, a program created to prepare graduate students like him for science, technology, engineering, or mathematics careers important to the DOE Office of Science mission. It provides graduate thesis research opportunities through extended residency at DOE national laboratories. He has already made several trips to DIII-D, in part to install his reflectometer, and has been impressed with the size of the operation.

"It takes a little while to kind of compartmentalize everything and say, 'OK, well, here's my part of the machine. This is what I'm doing.' It can definitely be overwhelming at times. But I'm blessed to be able to work on what has been the workhorse tokamak of the United States for the past few decades."


Related Links
Plasma Science and Fusion Center
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
New feedback system can improve efficiency of fusion reactions
Plainsboro NJ (SPX) Jun 10, 2022
Scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have refined the use of magnetic fields to improve the performance of doughnut-shaped fusion facilities known as tokamaks. The improved technique protects internal parts from damage by instabilities called "edge-localized modes" (ELMs) and allows tokamaks to operate for longer without pausing. "Our main result is that we showed that our technique can suppress ELMs while maximizing plasma performance," sa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Australia submits more ambitious 2030 emissions target to UN

Developing countries left 'disappointed' at climate talks

Biden hosts climate summit overshadowed by fuel costs

Flood of net zero vows suffer 'credibility gap': report

ENERGY TECH
Evan Leppink: Seeking a way to better stabilize the fusion environment

Lockheed Martin to build first long-duration energy storage system for US Army

UQ discovery paves the way for faster computers, longer-lasting batteries

Energy harvesting to power the Internet of Things

ENERGY TECH
1500 sensors for the rotor blades of the future

As the grid adds wind power, researchers have to reengineer recovery from blackouts

Long-duration energy storage beats the challenge of week-long wind-power lulls

400 GW wind, solar power per year to meet 1.5 C Paris Agreement

ENERGY TECH
Oil giant BP buys into $36 bn Australian renewables project

Rocket Lab selected by Ball Aerospace to Power NASA's GLIDE Spacecraft

Towards indoor lighting-powered thin-film, flexible solar cells with piezophototronics

Sponge-like solar cells could be basis for better pacemakers

ENERGY TECH
Finnish nuclear reactor OL3 delayed again to December

France probes alleged nuclear power cover-up: source

IAEA says it must visit Russia-occupied nuclear plant in Ukraine

Framatome expands cybersecurity offering with Cyberwatch acquisition

ENERGY TECH
Bacteria could transform paper industry waste into useful products

Toward customizable timber, grown in a lab

Ultrathin fuel cell uses the body's own sugar to generate electricity

Mystery solved about active phase in catalytic CO2 reduction to methanol

ENERGY TECH
Microfossils from early land plants hints at Australia's petroleum potential

Iran says Iraq repaid $1.6 bn of gas debt

Africa 'punished' by investment clamp on fossils, says Niger

New method offers a promising alternative for upgrading natural gas

ENERGY TECH
NASA, ESA finalize agreements on climate, 1 cooperation

Drought paved way for Islam's spread in ancient Arabia: study

Child malnutrition soars in Ethiopia as drought worsens: charity

Dying children reflect brutal toll of Somalia drought









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.